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大気化学分野における機械学習の利用 

Applications of Machine Learning in Atmospheric Chemistry 
 

飯沼賢輝 1 * 
 

近年の大気化学分野の進展は，多くの新知見をもたらす一方で，膨大なデータ解析という新たな課題

を顕在化させている。この課題に対し，機械学習は有望な解決手段として注目されており，既にオゾン

濃度予測，化学輸送モデルにおけるバイアス補正，反応機構の簡略化，反応速度定数の推定，質量

分析データの分類・同定など，幅広い応用が進展している。本稿では，主要な機械学習アルゴリズム

の概要とともに，これまでの応用事例を整理し，今後の展望として，物理・化学的制約を組み込んだハ

イブリッドモデル，因果推論，ならびに高い解釈性を有する手法の開発の必要性について論じる。 

 

1．はじめに 

近年の計測技術の進展により，従来の分析手法で

は検出が困難であった化合物，例えば高度に酸化さ

れた分子（Highly Oxygenated Molecules, HOMs）や，

イソプレン酸化過程において生成される高反応性中

間体などの直接観測が可能となり，大気化学反応に

関する理解が飛躍的に深化した。その場で測定を行

うオンライン分析の普及は，時間分解能を著しく向上

させ，大気化学反応のリアルタイム追跡を可能にした。

また，サンプル採取後に処理・分析を行うオフライン

分析では高解像で高感度な質量分析装置の進展に

より，大気試料中の膨大な化合物の化学式決定が可

能となった。こうした進歩は大気化学分野の研究を飛

躍的に発展させたが，同時に，前例のない規模のデ

ータを扱うこととなった。また最新の知見を反映した

SOA 生成などのプロセスを組み込むことで，大気化

学モデルは一層複雑化している。その結果，膨大な

データを効率的に処理・解析するための新たな手法

の開発が重要な課題となっている。 

近年，大規模データの解析において機械学習の

利用が急速に拡大している。機械学習では，コンピュ

ータが膨大なデータセットから特徴や関連性を学習

し，その結果を用いて未知のデータに対する分類や

予測を実施する。機械学習は様々な科学領域で利

用されているが，本稿では大気化学分野における応

用に焦点を当て，特に大気化学反応や化学種の特

性評価・分類に関する応用を概観する。さらに，現状

の課題を整理し，今後必要とされる研究の方向性に

ついて議論する。 

 

2．機械学習とは 

機械学習は人工知能（AI）の一領域であり，人間

が明示的に規則を定義することなく，膨大なデータか

ら統計的パターンを自律的に学習し，モデルを構築

する技術である。このモデルを用いることで，新たに

与えられたデータから同様のパターンや法則を抽出

することが可能となる。この用語の起源は 1959 年に

遡り，IBM の計算化学者であったアーサー・サミュエ

ルが，コンピュータがチェッカー（西洋碁）をプレイで

きるように学習する手法を研究し，その成果を論文と

して発表したことに始まる[Samuel, 1959]。その後，AI

分野では多様な手法の研究が進められ，いくつかの

ブームと停滞期を経て，現在の大規模な普及に至っ

ている。ここでは，AI の主要なアプローチである機械

学習に焦点を当て，特に「教師あり学習」，「教師なし

学習」,「強化学習」という三つの主要な学習手法の違
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いについて簡単に説明する。また各手法に採用され

ている代表的なアルゴリズムを表形式で整理する。具

体的な実装や理論的背景については，Python で使

用される機械学習ライブラリの scikit-learn のユーザ

ーガイドを参照されたい[Pedregosa et al., 2025]。 

2.1 教師あり学習 

教師あり学習は，特徴量（入力データ）とそれに対

応するラベル（正解）を含む学習データを用いて，特

徴量からラベルを推定する関数を学習し，未知の特

徴量が与えられた際にラベルを予測するモデルを構

築する手法である。身近な例としてはスパムメールの

検出，画像認識，株価予想，短期気象予報などがあ

る。その他マテリアルサイエンスや，創薬における分

子特性の推定などにも広く応用されている。この手法

は，正解ラベルを用いることで高い精度を達成できる

一方，入力データの質と量がモデル性能に大きく影

響するため，データ品質の管理に多大な労力を要す

る点が課題である。表1に教師あり学習で使われる主

なアルゴリズムをまとめる。アルゴリズムの選択は，入

力データの量的，及び質的特性および最終的な分

析目的に強く依存する。特に，結果の解釈可能性が

重視される場合，ニューラルネットワークのような複雑

なモデルは適切ではない。一方で，線形回帰により

十分に対応可能な問題に対して，過度に複雑なアル

ゴリズムを適用することは，計算コストの浪費につなが

り，合理的な選択とは言えない。 

2.2 教師なし学習 

教師なし学習はラベルが無いデータからアルゴリ

ズムがパターン，構造，特徴を自動的に抽出する手

法を指す。表 2 に教師無し学習で主に使用されるア

ルゴリズムをまとめる。本手法は，主に類似した特徴

表 1 教師あり学習で使われる主なアルゴリズム。 

アルゴリズム 目的 利点 欠点 

線形回帰 入力と出力の線形関係を仮定

し，モデルを構築 

シンプル，解釈性が高い 非線形関係に弱い 

ロジスティック回帰 シグモイド関数で確率を算出

し，その値でクラス分類を行う 

二値・多クラス分類に対応 非線形関係に弱い 

決定木 特徴量でデータを分割し木構

造で予測 

非線形関係を扱える。特

徴量重要度が分かる 

過学習しやすい 

ランダムフォレスト 複数の決定木をアンサンブル

し予測 

過学習抑制，安定した予

測，解釈性あり 

計算コストが高い 

勾配ブースティング決定

木（GBDT / XGBoost） 

弱学習器を逐次追加し誤差を

最小化 

高精度，複雑な非線形関

係に対応 

ハイパーパラメータ*

調整が必要 

線形サポートベクターマ

シン（LSVM） 

クラス間の間隔を最大化する

線形境界を求める 

高速 

シンプル，解釈性が高い 

非線形関係に弱い 

カーネルサポートベクタ

ーマシン（KSVM） 

線形分離できないデータを，

カーネル関数で高次元に変

換し，線形な境界を求める 

複雑な決定境界を学習可

能 

計算コストが高い 

ハイパーパラメータ*

調整が難しい 

ニューラルネットワーク

（NN） 

多層構造で非線形性を表現，

深層学習で高性能 

大規模データ対応，柔軟

性が高い 

解釈性が低い，計算

コストが高い 

*ハイパーパラメータ：機械学習モデルの過学習や構造を制御するために使われる，学習前に人間が設定する値。 
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を持つデータをグループ化するクラスタリングや，高

次元データの次元削減に利用される。身近な例とし

て，顧客の購買パターンを分析し，類似性に基づい

てグループを抽出し，商品推薦に活用する方法があ

る。主成分分析（Principal Component Analysis, PCA）

は，教師なし学習における代表的なアプローチとして

広く利用されている。これは，高次元データの次元削

減を施した後，クラスタリング手法と組み合わせること

で，サンプル間の構造的差異を視覚的に把握するこ

とを可能にするためである。近年注目されている画像

生成では，正解ラベルの無い多様な画像データから

特徴を学習し，その知識を基に新たな画像を生成す

るため，教師無し学習といえる。教師無し学習は正解

ラベルを必要としないため，データ前処理の負担が

比較的少なく，膨大なデータをそのまま扱うことで，

データに内在する構造や関係性を効率的に抽出で

きる利点がある。一方で，正解が存在しないため，得

られた分類結果の妥当性を慎重に評価する必要が

ある。また，入力データに含まれるノイズの影響を受

けやすく，結果の信頼性を確保するためには，結局

のところ適切な前処理が不可欠になる。 

2.3 強化学習 

強化学習では行動方策を学習の主体である「エー

ジェント」と，それが行動する対象となる「環境」で構

成される。エージェントと環境の間では「状態」，「行

動」，「報酬」の情報が交換される。表3に強化学習で

使われる主なアルゴリズムをまとめる。強化学習では，

エージェントが試行錯誤を繰り返し，長期的な報酬を

最大化するような行動方策（ポリシー）を獲得する。こ

れは人間の学習方法と似ている。強化学習が前述の

学習法と大きく違うのは，人間が関与せずとも，エー

ジェントが環境との相互作用を通じて自律的に最適

な行動方策を獲得できる点にある。強化学習の代表

的な事例として，囲碁や将棋において自己対戦を繰

表 2 教師なし学習で使われる主なアルゴリズム。 

アルゴリズム 目的 利点 欠点 

K-means データを指定したクラスタ

数に分割 

計算が速い，実装が簡

単 

クラスタ数を事前に指定

する必要がある 

非球状クラスタに弱い 

階層的クラスタリング データを階層構造でグル

ープ化し，デンドログラムで

可視化可能 

クラスタ数を後から決定

可能，構造把握に有効 

計算コストが高い 

DBSCAN 

（Density-Based Spatial 

Clustering） 

密度に基づいてクラスタを

形成し，ノイズを扱える 

クラスタ数を指定不要，

異常値検出に強い 

パラメータ設定が難しい 

PCA（主成分分析） 高次元データを低次元に

圧縮し，情報を保持 

次元削減で計算効率向

上，可視化に有効 

線形性を仮定 

非線形構造には弱い 

t-SNE 高次元データの非線形次

元削減，可視化に特化 

クラスタ構造の視覚化に

優れる 

計算コストが高い 

大規模データに不向き 

UMAP t-SNE より高速で構造保持

に優れる 

高速，クラスタ構造をよく

保持 

パラメータ調整が必要 

オートエンコーダ ニューラルネットワークで特

徴抽出し次元削減 

非線形構造に対応，柔

軟性が高い 

訓練に時間がかかる 

解釈性が低い 
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り返しながら学習を進め，人間のトッププレイヤーを

凌駕する性能を達成した AI プログラムが挙げられる。

加えて，自律型ロボットの動作制御においては，環境

との相互作用を通じて最適な行動ポリシーを獲得す

る強化学習が主要な手法として採用されている。 

上記の手法の中でも，特に教師あり学習と教師な

し学習は，大気化学分野への応用が比較的進んで

いる。次に，これまで大気化学分野で実施されてきた

機械学習の主な事例について述べる。なお，ここで

はすべての事例を網羅的に記載していないことに留

意されたい。 

 

3．大気化学分野での応用 

3.1 化学輸送モデルのオゾンバイアス補正 

化学輸送モデル（CTM）による大気中化学種の輸

送および反応過程の数値的再現においては，観測

値とモデル予測値との間に系統的な乖離（バイアス）

が生じることが報告されており，これはモデルの信頼

性や応用可能性に影響を及ぼしている。このバイア

スは主に，排出インベントリや気象場などの入力デー

タに内在する不確実性，モデルに実装された化学反

応スキームの限界，ならびに空間・時間解像度に関

する計算コスト上の制約に起因すると考えられる

[Ivatt & Evans, 2020]。とりわけオゾン濃度のバイアス

は，大気汚染に伴う健康影響の評価やリスク分析，

環境規制の立案・実施に関する政策決定，さらには

気候モデルの精度向上に対して重大な影響を及ぼ

す可能性がある。そのため，オゾンバイアスの低減は，

CTM の改良における重要かつ優先的に取り組むべ

き課題である。近年，機械学習手法の進展に伴い，

オゾン濃度予測におけるモデルバイアスの低減を目

的とした新たな手法として，機械学習を応用したアプ

ローチが提案されている[Hickman et al., 2025]。これ

らの手法は，従来の物理・化学ベースのモデルでは

捉えきれない非線形性や複雑な相互作用を補完す

る可能性を有しており，CTM の精度向上に向けた有

望な選択肢として注目されている。 

オゾンバイアス補正には，教師あり学習が広く適用

表３ 強化学習で使われる主なアルゴリズム。 

アルゴリズム 目的 利点 欠点 

Q-Learning 状態と行動の組み合わせに

対して価値（Q値）を学習し，

最適方策を導く 

環境モデル不要, シン

プル 

大規模状態空間で計算量

が膨大 

連続空間に不向き 

SARSA オンポリシー*で現在の方策

に従って次の行動を選び，

その行動で更新 

方策に沿った安全な学

習 

探索が保守的で最適解に

到達しにくい 

Deep Q-Network

（DQN） 

Q-Learning をニューラルネ

ットで拡張し，連続的な状態

空間に対応 

高次元状態（画像など）

に対応可能 

ハイパーパラメータ調整が

難しい 

サンプル効率が低い 

Policy Gradient 方策を直接パラメータ化し，

勾配法で最適化 

連続行動空間に対応，

柔軟な方策表現 

勾配推定の分散が大きく不

安定 

Actor-Critic Policy Gradient と価値関数

を組み合わせ安定性を向上 

Policy Gradient より安

定，連続行動対応 

実装が複雑，ハイパーパラ

メータ調整が難しい 

Proximal Policy 

Optimization（PPO） 

方策更新を制約し，学習の

安定性を確保 

実装が比較的簡単，安

定性が高い 

サンプル効率は低い，大規

模計算コストが必要 

*オンポリシー：現行ポリシーに基づく行動選択を通じて，同ポリシーの改善を図る学習アプローチ 
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されている。具体的には，CTM モデルのオゾン出力

を観測値や再解析データと照合し，誤差補正のため

の学習データを生成することで，モデル出力の精度

を向上させる手法である[e.g. Ivatt & Evans, 2020; 

Miyazaki et al., 2025; Sun & Archibald, 2021; Tang et 

al., 2024; Xu et al., 2021]。またオゾンに関わる一部，

又は全ての化学反応プロセスを機械学習で代替し，

モデルの簡略化および計算効率の向上を図る手法

が提案されている[e.g. Anderson et al., 2022; Keller & 

Evans, 2019; Nowack et al., 2018; Shen et al., 2022]。

これらの研究では多様な機械学習アルゴリズムが活

用されており，バイアス補正にはランダムフォレストや

XGBoost が，モデルの簡略化には GBDT が主に用

いられている。ニューラルネットワークは，バイアスの

補正だけでなくモデルの簡略化にも活用されている。

さらに，GBDTを用いて CTMによる 5×5 km解像度

のオゾン予測を 1×1 kmにダウンスケールすることで，

粗い解像度では希釈されてしまう局所的な NOx排出

を反映し，オゾンとNOの滴定反応を補正する手法が

報告されている。このアプローチにより，観測値との

誤差が大幅に低減され，従来の解像度では捉えられ

なかった中長期的な変動や傾向を再現することが可

能となっている[Gouldsbrough et al., 2024]。 

 

3.2 大気化学反応機構への応用 

大気化学モデルの高度化においては，反応機構

の網羅性，計算コストの低減が不可欠である。反応

機構の詳細化は計算コストの増加を不可避とし，さら

に反応依存性の複雑さが並列化を制約するため，計

算リソースの単純な増加による高速化は期待できな

い。室内実験等で反応経路が限定される状況では，

包括的なモデルから関連する反応のみを自動で選

択し，計算可能であることが望まれる。これらの課題

に対して，機械学習の活用は極めて有効な手段とな

り得る[e.g. Keller & Evans, 2019; Kelp et al., 2020]。 

Master Chemical Mechanism （MCM） [Jenkin et 

al., 1997]や Gecko-A [Aumont et al., 2005]といった明

示的な大気化学モデルは，大気中の VOC 反応や

SOA 生成メカニズムの解析に極めて有用である。し

かし，CTM や化学気候モデルへの適用は，膨大な

計算リソースを要するため現実的には困難である。そ

こで Schreck らは，Gecko-A モデルで得られた多様

な環境条件下の結果を用い，フィードフォワード型全

結合ニューラルネットワークおよびリカレントニューラ

ルネットワークによる機械学習を行い，人為起源 

VOC の OH 酸化反応および植物起源 VOC の 

O₃ 酸化反応に伴う SOA 生成を再現し機械学習の

再現度を比較した[Schreck et al., 2022]。報告によれ

ば，ニューラルネットワークを用いたエミュレーション

は化学種の時間変化を高精度で再現可能であり，長

期的な安定性に関しても良好な結果が得られている。

さらに最大 6 桁の高速化が報告されており，化学気

候モデルへの導入も可能であることが示唆されてい

る。さらに，同グループはランダムフォレスト法を用い

て，人為起源 VOCの酸化過程，生成される SOA質

量，ならびにガス／エアロゾル分配の再現を試みた。

その結果，一部に再現性の課題が認められたものの，

将来的には大規模モデルへの適用が可能であること

を示唆している[Mouchel-Vallon & Hodzic, 2023]。 

複雑な反応機構の簡略化や未知反応の探索では，

グラフ理論とニューラルネットワークを統合したグラフ

ニューラルネットワーク（Graph Neural Network, GNN）

の応用が報告されている[J. Zhou et al., 2020]。GNN

は，グラフ構造を有するデータの処理を目的として設

計されたニューラルネットワークであり，非規則構造を

持つデータの解析に優れた性能を示す。化学分野

においては，分子を原子（ノード）と原子間結合（エッ

ジ）から構成される分子グラフとして表現し，各ノード

およびエッジに特徴ラベルを付与することで分子構

造情報をモデル化する手法が広く利用されている。

GNNは，メッセージパッシング手法により，各ノードが

隣接ノードから情報を集約し自身の特徴を更新する。

この過程を通じて，局所的な構造情報が階層的に統

合され，例えば反応中心の同定や結合変化の予測
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が可能となる。Getter らは，大気種をノード，反応をエ

ッジとしてグラフ構造で表現することにより，新規大気

反応を探索する手法を提案している[Getter et al., 

2025]。彼らは，GEOS-Chem の反応機構から一部の

化学反応（エッジ）を除去したデータを学習に利用し，

GNN モデル間でエッジ再構築性能を評価した。評

価の結果，提案モデルは約 90％のエッジを再構築

可能であり，このアプローチが新規反応の探索にお

いて有用である可能性を示唆した。さらに，グラフ理

論 を 応用 し た オ ー プ ン ソ ー ス ソ フ ト ウ ェ ア

MEXPLORER[Sander, 2024]では，複雑な反応機構

の解析，簡略化，可視化が可能であることが示されて

いる。また，学習可能な人工知能アルゴリズムである

マルチヘッドアテンションを組み込んだ手法として

Artificial Intelligence Model for Aerosol Chemistry 

and Interactions（AIMACI）[Xia et al., 2025]が提案さ

れている。 

 

3.3 反応速度定数の推定 

反応速度定数は大気化学において最も基本的で

重要なパラメータの一つである。多くの重要な反応の

速度定数が実験より正確に求められているが，全て

の起こりうる化学反応の速度定数を実験より求めるこ

とは現実的ではない。さらに，膨大に存在する反応

中間体の反応速度定数は，実験データ，理論計算，

あ る い は 構 造 活 性 相 関 （ Structure‒Activity 

Relationship, SAR）によって推定されている。しかし，

これらの手法には多大な計算コストや計算リソースが

必要であり，特にSARは適用可能な化合物が限定さ

れるため，多くの化合物を網羅することは現実的では

ない。 

従来報告されている機械学習を用いた反応速度

定数の推定手法の多くは，アレニウス式のパラメータ

を機械学習で予測し，その予測値を基に反応速度を

計算する方法である[Komp et al., 2022]。反応速度定

数推定における機械学習の精度は，訓練データの

量的規模と質的水準に依存する。反応速度論のデ

ータセットは多様に存在するが，機械学習の観点か

ら要求される条件を包括的に満たすものは，現状で

は存在しない。しかし，近年では機械学習の利用を

前提としたデータセットの整備が活発化している。例

えば，気相反応では Grambow らによる約 12,000～

16,000 件の有機反応を DFT 計算より得た量子化学

データがある [Grambow et al., 2020b]。また，von 

Rudorff らは E2（脱離による多重結合形成反応）およ

び SN2 反応（一段階で進行する求核置換反応）に特

化し，4,466 種の遷移状態を含むデータセットを提供

している[von Rudorff et al., 2020]。Grambow らは，同

時に自身のデータセットを活用し，前駆体および生

成物のグラフ表現のみを入力として，ニューラルネッ

トワークにより活性化エネルギー（Ea）を推定する手法

を提案している[Grambow et al., 2020a]。さらに，特定

の反応系に焦点を当てた機械学習手法も提案され

ている。例えば，LuらはアルケンとOHの反応を対象

とし，C₂～C₅の 10種類のアルケンをトレーニングデー

タとして用いて，C₆～C₁₂アルケンの反応速度定数を

推定し，十分な精度が得られることを報告している

[Lu et al., 2021]。さらに，大気反応に特化した手法と

して，Morgan フィンガープリントとグラフニューラルネ

ットワークの一種である D-MPNN を組み合わせて反

応速度定数を推定するアプローチが提案されている

[Al Ibrahim & Farooq, 2022]。この研究では，SAR用

に編纂された大気気相反応のアレニウス式パラメー

タを含むデータセット AtmVOCkin[McGillen et al., 

2020]をトレーニングデータとして用い，修正アレニウ

ス式のパラメータを機械学習により推定し，反応速度

定数を算出している。多相化学反応への応用として，

Berkemeier らは，kinetic multi-layer model of aerosol 

surface and bulk chemistry （KM-SUB）の計算コスト

が大きい速度論モデル部分に対し，ニューラルネット

ワークを用いた代理モデルを構築し，精度を維持し

たまま高速化に成功している[Berkemeier et al., 2023]。 

 

3.4 質量分析手法への応用 
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イオン化法や質量分析装置の進歩により，大気ガ

スやエアロゾル試料から，これまで未知であった多く

の化合物が検出可能となった。しかし，それらのデー

タ解析や化合物同定には依然として多くの課題が残

されている。特に質量分析装置の高解像度化によっ

て膨大なデータが得られるようになったことで，デー

タ解析には情報科学的手法の導入が不可欠となっ

ている。 

教師なし学習手法の代表例である PCA や PMF

（Positive Matrix Factorization: 観測データを非負の

行列に分解し，寄与源とその寄与量を推定する統計

的手法）は，大気サンプル分析やバイオインフォマテ

ィクスで広く活用されている。特に大気化学では，発

生源寄与解析において重要な役割を果たし，ラベル

付けが困難なデータの解析に有効である。特にオン

ライン型の質量分析計である AMS（Aerosol Mass 

Spectrometer, Aerodyne Research, MA, USA）を用い

た発生源寄与の解析において頻繁に利用されており，

その有効性は広く認められている。詳細な手法につ

いては，例えば Zhang らによるレビューを参照された

い。[e.g. Zhang et al., 2011]。 

同じくオンライン型の質量分析計として単一エアロ

ゾル質量分析計（Single Particle Mass Spectrometer，

SPMS）がある。AMSは全体のエアロゾル組成を把握

するのに用いられるが，SPMS ではエアロゾルごとに

成分を直接イオン化して測定できるため，混合状態

やアエロゾル間の化学的多様性を解析するのに有

効である。このようなデータではアエロゾルのクラス分

類を正確に短時間で行うためのデータ解析手法が必

要となる。Christopoulos らは，ランダムフォレストを

SPMSのデータ解析に適用し，大まかなアエロゾル分

類で 90％以上，より詳細な分類でも約 90％の精度を

達成したと報告している[Christopoulos et al., 2018]。 

オフライン分析の分野では，Franklin らが，GC/MS

や GC×GC/MS データに対応する未知化合物の定

量・特性評価を可能にするランダムフォレストベース

の手法を開発し，R 用パッケージ Ch3MS-RF として

公開している[Franklin et al., 2022]。Franklin らのラン

ダムフォレストモデルは，130 種類の既知成分を含む

外部標準の揮発性・極性空間上の位置と質量スペク

トル情報を用いて学習・評価されており，標準物質が

存在しない化合物についても，炭素数，蒸気圧，炭

素酸化状態，O:C 比を高い精度で予測できることが

報告されている。さらに，ソースコードが公開されてい

るため，用途に応じた改良やカスタマイズが可能であ

る。 

その他にも，大気有機化合物の同定に向け，マス

スペクトル情報を基盤とした機械学習の応用事例も

報告されている。Bortolussi らは，既知農薬の複数の

化学イオン化試薬を使用した質量分析データを用い

てモデルを学習させ，検出精度と信号強度予測性能

を検証し，報告している[Bortolussi et al., 2025]。現状

では，構造が類似した化合物に対しては高い精度を

示すものの，未知化合物を直接同定できる段階には

至っていない。しかし，報告によれば，今後トレーニ

ングデータを充実させることで，未知化合物の同定に

資するモデルの構築が可能になることが示唆されて

いる。その他にも大気中ハロカーボンの GC/EI-

HRMS 分析結果から，機械学習を用いて未知化合

物のフラグメントに化学式ラベルを付与する新しいア

プローチが報告されている[Guillevic et al., 2021]。 

質量分析計ではない検出器に関して，Stewart ら

は，光イオン化検出器における揮発性有機化合物の

イオン化特性と検出応答を，量子力学的計算の代替

として機械学習を用いて効率的に予測し，計算コスト

を大幅に低減するアプローチを提示している[Stewart 

et al., 2023; Stewart & Martin, 2023]。光イオン化法は

質量分析器のイオン化手法としても使われるため，質

量分析への適用が期待される。 

 

4．現状の課題と将来の方向性 

前項で述べたように，大気化学分野においても機

械学習の応用が進みつつある。特に，大気化学は数

百を超える化学種と複雑な反応ネットワークを含むた
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め，従来の数値モデルでは計算コストが極めて大き

いことから，機械学習による効率的な近似や予測手

法の開発は重要な研究課題となっている。 

しかし，機械学習の適用にはいくつかの制約が存

在する。一般的な課題として，トレーニングデータの

品質確保，モデルの解釈性の低さ（内部機構の理解

が困難で，機構的説明可能性が限定的），汎用性の

制限（分布外，新規条件で性能が低下し，再学習が

不可欠）が挙げられる。さらに，大気化学分野特有の

問題として，時間的・空間的および化学種のカバレッ

ジ不足による学習データの限定性，複雑な化学反応

を対象とする際の精度と解釈性の両立の困難性，気

候モデルや CTM における長期シミュレーションでの

安定性の確保，そして科学的妥当性の評価に伴う困

難性が顕著である。 

これらの課題を解決するためには，物理・化学的

制約を組み込んだ機械学習手法の導入が不可欠で

ある。例として，Physics-Informed Neural Networks

（PINNs）[Raissi et al., 2019]，明示的モデルの一部を

機械学習で置き換えたハイブリッドアプローチ[Keller 

& Evans, 2019]，不確実性評価を目的としてベイズ推

論や確率的手法を組み合わせた機械学習の活用が

求められる[Zaidan et al., 2025]。さらに，データ管理，

利用，収集方法の透明性を確保し，データガバナン

スおよび倫理的な機械学習利用のための枠組みを

構築することは，極めて重要な課題である。これらの

取り組みは，データの信頼性と公平性を保証し，学

際的な協力を促進するうえで不可欠である。 

筆者は長年，イオンモビリティ質量分析計を用いて

得られる衝突断面積（CCS）値を，大気化学種の同定

に活用してきた。その過程において，標準物質が存

在しない化合物の構造推定に際しては，量子化学計

算手法を併用し，CCS 値を推定する必要があったが，

量子力学的計算の実施には，膨大な計算コストおよ

び高価な専用ソフトウェアを要するため，想定される

すべての分子構造について網羅的に計算を行うこと

は現実的に困難であった。Zhou らによる 2017 年の

研究で，機械学習を用いて CCS 値を推定する手法

であるMetCCS[Z. Zhou et al., 2017]が提案されて以

来，様々な機械学習を用いた CCS 値推定アプロー

チが発表されている[Plante et al., 2019; Rainey et al., 

2022; Ross et al., 2020; Z. Zhou et al., 2020]。これらの

手法の導入により，従来の計算手法と比較して計算

時間を大幅に短縮でき，さらに多数の化合物に対し

て CCS 値を容易かつ比較的高精度に推定すること

が可能となった。このように，分析データの高度化・

複雑化により，従来の解析手法では対応が困難であ

る問題も機械学習の進展によって，突如として解決

に向かう可能性がある。今後，解釈性が確保された

機械学習手法の発展が，大気化学分野における

様々な研究を支援する有力な手段となることを期待

したい。 
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大気汚染による健康影響の軽減には，高精度な大気質予測が不可欠である。本研究では，国立環境

研究所の大気質予測システム（VENUS）のオゾン予測を念頭に，領域化学輸送モデル（WRF–

CMAQ）出力と大気汚染物質広域監視システム（AEROS）の地上観測を用いてニューラルネットワーク

型ガイダンスシステムを構築した。予測されたオゾン濃度や PM2.5 濃度に加え，風速，気温，相対湿

度，月，時刻などを入力として学習し，2017 年を対象に検証を行った。その結果，相関係数は 0.66 

から 0.87 へ向上し，RMSD も約 60％ 低減するなど，全国的に見られた過大バイアスが大きく改善

された。機械学習によるガイダンスシステムによる予測結果の補正は既存大気質予測システムの精度

向上に有効であり，実運用への展開が期待される。 

 

 

1．はじめに 

大気汚染は人間社会の健康・経済活動・生活環境

に多大な影響を及ぼしている。その中でも，微小粒

子状物質（PM2.5）やオゾン（O₃）による健康被害は深

刻であり，呼吸器疾患や循環器疾患の増加など，長

期的な公衆衛生上の問題を引き起こしている。このよ

うな背景から，大気汚染の予測および早期警戒シス

テムの整備は，被害の軽減やリスク管理の観点から

極めて重要である。実際，欧州や北米，東アジアを

中心に，数多くの国で大気汚染予測システムの運用

が進められている[Bai et al., 2018]。しかしながら，現

行の予測システムには依然として精度の限界が存在

し，改善の余地が大きい。 

大気汚染予測の精度向上に向けては，観測デー

タを用いて初期値や排出量を更新するデータ同化手

法が有効であることが知られている[例えば，Menut & 

 
図１ ガイダンスシステムを組み込んだ大気汚染予測システムの概要。参考までにデータ同化や逆推計手法を用いた予測

精度改善の流れも示す。 
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Bessagnet, 2019]。しかし，データ同化の導入や運用

には高い計算コストおよびシステム開発負担を伴うた

め，実運用への適用には一定の制約がある。一方で，

数値天気予報分野においては，モデル出力に対し

て補正を付加する「ガイダンスシステム（guidance，ま

たはpost-processing（PP））」が広く用いられている。ガ

イダンス手法は，データ同化と比較して導入が簡便

で，既存モデル出力を再利用しつつ予測誤差を補

正できるという特徴を有している（ガイダンスシステム

については気象庁の資料が詳しい[気象庁予報部, 

1991; 高田, 2017]）。 

近年，大気汚染予測においても，化学輸送モデル

の出力に対してガイダンスシステムを適用する試み

が進められつつあるが[森野ら，2025]，開発段階にあ

り実運用に至っている例は限られている。環境研究

総合推進費「機械学習を用いた大気汚染予測システ

ムへのガイダンス手法の開発と予測精度向上（5RF-

2002，2020–2021 年度）」および「機械学習によって

観測データと統合された新しい大気汚染予測システ

ムの開発と実働実験（5MF-2201，2022–2023 年度）」

では，国立環境研究所が運用する大気質予測シス

テム（VENUS，https://venus.nies.go.jp/）のオゾン予測

への応用を念頭に，機械学習によるガイダンスシステ

ムの開発とその検証を行った。本稿ではその結果に

ついて紹介する。 

 

2．手法及び観測データ 

図 1 に本研究で開発したガイダンスシステムを組

み込んだ大気汚染予測システムの概要を示す。参考

のため，データ同化による予測修正の流れも示す。

データ同化では，観測データを取り込むことでモデ

ルの初期条件や排出量データを逐次的に更新し，

予測精度の向上を行う。ガイダンスシステムは予測結

果と観測データから予め作成され，予測結果に直接

作用することで予測値の補正を行う。データ同化は

化学輸送モデルの上流で働く一方，ガイダンスシス

テムはモデルの下流で作用することに大きな違いが

ある。 

 

2.1 大気汚染予測システム 

ガイダンスシステムの構築に必要な訓練データと

検証用のテストデータは，オフラインで結合した領域

気象モデル（WRF（Ver 4.1.1，Skamarock et al., 2019））

と領域化学輸送モデル（CMAQ（Ver 5.3.1, U.S. EPA, 

2019））を用いて作成した。VENUS への導入を考慮

し，モデルの設定は極力 VENUS に準拠した[菅田

ら, 2011]。VENUS では，東アジア全体を対象とした

解像度 45 km の領域（Domain#1），広域日本を対象

とした解像度 15 km の領域（Domain#2），日本列島

を対象とした 5 km の領域（Domain#4）の３重ネステ

ィングを採用しており，ガイダンスの構 築には 

Domain#3 の結果を後述する観測データの格子グリ

ッドに合わせ内挿して用いた。詳しい計算設定は

Itahashi et al. [in revise]を参考にされたい。 

 

2.2 大気汚染物質広域監視システム 

大気汚染物質広域 監 視システム（AEROS，

https://soramame.env.go.jp/）は国内の大気汚染監視

を目的としたモニタリングネットワークである。本研究

では AEROS で得られたオゾンの時間値を教師デー

タとした。ただし，各観測サイトで得られた値ではなく，

統計的な品質管理（QC）を行い，格子グリッド（水平

解像度約 0.375 度）に変換されたデータセットを用い

た。 QC は，観測地点ごとのチェックを行うサイトレ

ベル QC と各時刻のデータのチェックを行う時刻レ

 
図２ ニューラルネットワークによって構築されたガイダン

スシステムの概要。 
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ベル QC から構成されている。詳細は Itahashi et al.  

[in revise]を参考にされたい。 

 

2.3 ガイダンスシステム 

ガイダンスシステムはニューラルネットワークを用い

た機械学習によって構築する。図２に構築したニュー

ラルネットワークの概要を示す。入力値には予測され

たオゾン濃度に加えて，予測された PM2.5 濃度，東

西・南北方向の風速，気温，相対湿度といった気象

に関する予測値を選択した。また，月および時刻の

情報も入力値とした。出力値はオゾン濃度で，教師

データには地上オゾン観測濃度の時間値を用いた。

ガイダンスシステムは pytorch ライブラリーを基に構

築し，損失関数には平均二乗誤差を，最適化アルゴ

リズムにはAdamを採用した。日本全国を約 0.375度

のグリッドに分割し，前述の品質管理の実施に十分

な観測地点が含まれた 144 グリッドそれぞれに対しガ

イダンスシステムの構築を行った。それぞれのグリッド

は図３で確認できる。 

入力値の違いがガイダンスシステムのパフォーマ

ンスに与える影響を調べるために，いくつかの感度

実験も行った。詳細は省くが，例えば，地表面気圧

や境界層高さ（PBL）は予測精度向上にはほとんど寄

与しなかった。一方，月や時刻の情報の追加はオゾ

ン濃度予測に対してさらなる精度向上をもたらした。

これは PM2.5 予測を対象としたガイダンスシステム

では見られなかった。オゾン濃度予測には日内周期

変動や季節変動を正しく表現することの重要性を示

 

図３ ガイダンスシステム適用前後の相関係数 R と平均二乗誤差（RMSD）の分布。（a）ガイダンスシステム適用前の R，

（ｂ）ガイダンスシステム適用後の R，（c）ガイダンスシステム適用前後の R の差。（d）ガイダンスシステム適用前の

RMSD，（e）ガイダンスシステム適用前の RMSD，（f）ガイダンスシステム適用前後の RMSD の差。 
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唆する結果であるといえる。 

ガイダンスシステムの構築は 2013–2016 年のデー

タを用いて行った。検証は 2017 年を対象に行った。

検証では，構築したガイダンスシステムを用いてモデ

ルの予測値の補正を行い，補正前と補正後の値を 

AEROS の観測値と比較することでガイダンスシステ

ムの性能を定量的に評価した。 

 

3．検証結果 

図３に各グリッドにおける相関係数（R）および平均

二乗誤差（RMSD）のガイダンスシステム適用前後の

値とその差の分布を示す。値が示されていない地域

は， AEROS による観測が不十分であり，ガイダンス

システムの作成ができなかった地域である。ガイダン

スシステム適用前は，相関係数は概ね 0.5から 0.7の

範囲に含まれ，RMSD も 20 ppbv を超えるグリッドが

多く見られた。ガイダンスシステムの補正によって， 

R および RMSD ともにすべてのグリッドで値が改善

された。 R は全体の 94.4%（136/144）で 0.8 を超え

た（ガイダンス適用前はわずか 2 グリッドのみ）。 

RMSD は平均で 60%減少した。 

図４に予測値と観測値の差の頻度分布を示す。ガ

イダンスシステムによる修正前，すなわち大気汚染予

測システムによる予測は全体的にオゾン濃度を過大

評価していることがわかる。観測値との差が±10 ppbv

に収まったのは全体の 32.7%であった。ガイダンスシ

ステムによる修正後は，予測システムに見られた過大

バイアスが解消され，その分布の分散も小さくなって

いる。観測値との差が±10 ppbvに収まったのは全体

の 82.5%に大幅に改善した。 

全グリッド，全時間値で計算した統計量を表１にま

とめた。Rは 0.66から 0.87に大きく向上した。RMSD

は大きく改善し，10 ppbv 以下となった。一致度指数

（index of agreement: IOA）やスキルスコア（skill score）

の値も大きく上昇し，それぞれ 0.9を超えている。バイ

アスに関する指標では，50%近くあった規格化平均

偏差（normalized mean bias: NMB）や平均分割偏差

（mean fractional bias: MFB）が 2%前後まで大きく減

少している。 

Emery et al. [2017]は，化学輸送モデルを用いた

既往研究のレビューを通じて，統計指標として 

normalized mean bias（NMB），normalized mean error

（NME），相関係数 R を用い，再現性の評価にお

いて目標とすべき範囲（Performance Goal：NME < 

 
図４ モデル予測値と観測値の偏差（モデル予測オゾン濃

度値から観測されたオゾン濃度値を引いたもの）の頻度

分布。青線はガイダンスシステム適用前，赤線はガイダン

スシステム適用後。平均偏差や-10 から +10 ppbv の範

囲に含まれる偏差の割合も示す。 

 
図５ NMB と NME に対するサッカーゴールプロット。青のプ

ロットがガイダンスシステム適用前，赤のプロットがガイダ

ンスシステム適用後を示す。相関係数 R は色のコンター

で示す。Emery et al. [2017]で提案された許容範囲と目標

範囲をそれぞれ，鎖線，実線の枠で示す。 

表１ ガイダンスシステム適用前後で計算された各統計量のまとめ 

 

平均偏差 相関係数 平均⼆乗誤差 ⼀致度指数 スキルスコア 平均規格化誤差 平均規格化偏差 平均分割誤差 平均分割偏差
Mean bias [ppbv] R RMSD [ppbv] IOA SS NME [%] NMB [%] MFE [%] MFB [%]

ガイダンス適⽤前 16.5 0.66 20.7 0.41 0.76 53.7 51.3 51.0 49.2
ガイダンス適⽤後 0.6 0.87 8.1 0.93 0.92 19.2 -2.0 24.7 2.0
n = 1239400
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15 %, NMB < ±5 %, R > 0.75）と，妥当とみなせる

許容範囲（Performance Criteria：NME < 25 %, NMB 

< ±15 %, R > 0.50）を提案した。図５に，各グリッ

ドにおけるこれらの統計指標の分布を示す。目標

範囲および許容範囲は，それぞれ実線と鎖線で示

されている。プロット点がこれらの線で囲まれた

範囲内にあり，かつ R が所定の条件を満たして

いれば，それぞれの目標範囲または許容範囲を達

成したことを意味する。まず，ガイダンスシステ

ム適用前は，過大バイアスを反映してすべてのグ

リッドが図の右側に位置している。NMEと NMB

の間に明確な比例関係があるが，この分布は予測

結果に過大バイアスが含まれる場合によく見ら

れる。ガイダンスシステム適用前は，すべてのグ

リッドで許容範囲を達成することはできなかっ

た。一方，ガイダンスシステム適用後は分布が中

心下方に集まり，NME，NMB ともに大きく改善

していることがわかる。全体の 91.7%（132/144）

が許容範囲を，2.8%（4/144）が目標範囲を達成し

た。 

 

4．おわりに 

環境研究総合推進費「機械学習を用いた大気汚

染予測システムへのガイダンス手法の開発と予測精

度向上（5RF-2002，2020–2021 年度）」および「機械

学習によって観測データと統合された新しい大気汚

染予測システムの開発と実働実験（5MF-2201，

2022–2023 年度）」では，国立環境研究所が運用す

る 大 気 質 予 測 シ ス テ ム （ VENUS ，

https://venus.nies.go.jp/）への導入を念頭に，ガイダン

スシステム（guidance または post-processing）の開発

を行った。ガイダンスシステムの構築には，ニューラ

ルネットワークによる機械学習を選択し，教師データ

として大気汚染物質広域監視システム（AEROS）で

観測されたオゾン濃度の時間値を用いた。 

ガイダンスシステムの適用前，すなわちプレーンな

モデルの予測結果には日本全国で共通した過大評

価が見られ，平均偏差は 16.5 ppbv であり，NMB や 

MFB も 50% を超過した。RMSD はすべてのグリッ

ドで 10 ppbv を超え，56%（80/144）のグリッドで 20 

ppbv より大きくなった。ガイダンスシステム適用後は，

過大評価が大きく改善され，平均偏差は 0.6 ppbv 

に減少し， NMB や MFB も 2% 前後まで改善し

た。Emery et al. [2017]による再現性評価では，ガイ

ダンスシステム適用前はすべてのグリッドで許

容範囲および目標範囲を達成することができな

かった。一方，ガイダンスシステム適用後は，全

体の 91.7%（132/144）が許容範囲を，2.8%（4/144）

が目標範囲を達成した。これらのガイダンスシス

テムによる予測再現性の向上は，どの季節および

日本全国すべてのグリッドで見られ，手法として

の汎用性を示唆している。 

一方で，本研究では機械学習手法に特有の注意

点も明らかになった。第一に，オゾン予測におい

ては，境界層高度など濃度と物理的な関連が強い

と考えられる気象要素よりも，月や時刻といった

カレンダー情報を入力変数として用いることが，

ガイダンスシステム性能の向上に大きく寄与し

た。これは，オゾン濃度に顕著な季節変動や日内

変動が存在し，それらを再現するうえで月・時刻

情報が重要であることの裏返しであるが，同時に，

入力変数の選択がガイダンスシステムの性能を

大きく左右することを示唆している。第二に，長

期トレンドを有する現象に対しては，機械学習に

より構築したガイダンスシステムが，むしろ系統

的なバイアスを付加してしまう場合があること

が分かった。これは，ガイダンスシステムが過去

データに基づいて学習されるという性質に起因

するものである。現在進行形で長期的な変化が無

視できない場合には，追加学習や逐次学習による

動的なガイダンスシステムの構築が求められる。 
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機械学習モデルによる大気モデルのバイアス補正 

Bias correction of chemical transport models using machine learning 
models 
 

森野悠 1 * 
 

大気汚染物質の環境影響評価に必要な曝露データを推計する際に，地上観測や衛星観測で時空間

的に不足する情報を補ううえで，化学輸送モデル（CTM）の果たす役割は大きい。CTMの計算値は観

測値に対するバイアスを有するが，近年，このバイアス補正に機械学習手法が広く利用され，従来の

簡易的な手法と比べて高精度での濃度場推計を可能としている。本稿では，機械学習による CTM の

バイアス補正手法を概説する。 

 

 

1．はじめに 

大気汚染物質の環境影響評価において，濃度の

時空間分布の正確な推計が必要である。先進国の

都市域ではモニタリング地点が密に配置されている

ことが多いため観測データの内挿でも濃度場の推計

が可能である。一方でモニタリング地点がまばらな地

域やモニタリングが実施されていない地域・期間にお

いては，時空間的に連続な濃度分布データを算出

可能な化学輸送モデル（CTM）の計算値などを参照

する必要がある。ただ，CTM の計算結果は排出量を

含む入力データや物理・化学過程の計算モジュール

などの不確実性に起因するバイアスを有する。その

ため，CTM の計算結果を環境影響評価や汚染対策

立案に活用するためには，バイアスを補正する必要

がある。 

環境影響評価の研究者がバイアス補正を実施す

る場合，研究の主眼は影響評価モデルの開発・精緻

化であるため，簡易なバイアス補正手法が好まれる。

一方，バイアス補正に機械学習モデルを用いること

で，疫学研究の入力データにも利用可能な高精度の

濃度場構築が可能となっている。機械学習モデルは

複雑系・非線形系の問題に強く，後述の簡易手法と

比べてバイアスのみでなく平均誤差や時空間変動を

補正可能という利点がある。本稿では簡易手法と機

械学習モデルによる CTM のバイアス補正手法を概

説した後に，筆者らによる適用事例を紹介する。 

 

2．マッピング手法 

本節では，CTM などのデータを基に大気汚染物

質の地表濃度の空間分布を推計するマッピングの手

法を概観する。 

 

2.1 入力データ 

地上観測が充実している地点では，逆距離加重

法や地球統計学モデルに基づくクリギング法

[Matheron, 1963]などによる観測データの内挿で高

精度のマッピングが可能である。逆距離加重法では

推計地点から観測地点までの距離の逆数で重み付

け計算し，クリギング法では距離の近い観測点のデ

ータは大きな類似性を持つという空間相関構造を利

用して，空間的に連続な濃度場を推計する。 

一方で，地上観測点が不足する地域においては，

空間網羅性の高い衛星観測やCTM計算で得られる

時空間分布の情報を入力データ（説明変数）に利用
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して，2.2節で後述する手法により大気汚染物質の濃

度場（目的変数）を推計する。例えば地表 PM2.5濃度

のマッピングには，極軌道衛星 Terra/Aqua に搭載さ

れたMODIS（中分解能撮像分光放射計）センサーで

2000 年頃から現在まで測定されているエアロゾル光

学的厚さ（AOD）が広く利用されており，PM2.5濃度の

長期トレンド推計にも活用されている[van Donkelaar 

et al., 2021; Shen et al., 2024]。また，2010年代以降，

欧州（Meteosat），アジア（Himawari, GOCI, FengYun

など），北米（GOES, TEMPO）で静止軌道衛星のデ

ータが利用可能となり，各地域での 1 時間分解能で

のリアルタイムの PM2.5 マッピングも可能となっている

[例えば，Zhang et al., 2022]。衛星観測では地上観測

点が不足する地域の観測データが得られる一方で，

雲・積雪などに起因する欠測データが多く，加えて，

地上濃度推計には鉛直分布の仮定が必要となる。ま

た，地表オゾン（O3）濃度のマッピングにおいては，極

軌道衛星 Aqua に搭載された OMI センサーや，

Sentinel-5Pに搭載されたTROPOMIセンサーのデー

タである NO2カラム量や対流圏下層の O3カラム量が

説明変数として利用されている[Wang et al., 2022; 

Jung et al., 2024]。 

また，CTM は時空間的に連続なデータを出力す

る利点を持つため，PM2.5や O3のマッピングに広く利

用されている。CTM の出力がそのまま利用される場

合に加えて，観測値を CTM 計算値に同化した客観

解析データが説明変数として利用される。CTM は地

表の PM2.5濃度と鉛直積算量である AOD との間の

関係式を作成する際にも活用されている。上記デー

タに加えて，排出量データ，気象客観解析データ，

土地利用データなども説明変数に利用されることが

多く，目的や対象に合わせて入力データセットが選

択されている。 

 

2.2 推計手法 

CTM計算値の最も簡易的なバイアス補正手法とし

て，過去における実測と計算値の平均濃度比を将来

予測値に乗ずる方法がある。この手法は，米国にお

いて O3・PM2.5 などの環境基準を達成していない地

域の行政機関が環境基準達成のための行動計画を

策定する際の数値モデル評価でも利用されている

[速水, 2021]。具体的には相対応答係数（CTM で計

算される対策前後の濃度変化割合）を観測値に乗ず

ることで，対策後の目標評価濃度を予測する。平均

濃度比を用いた簡易手法は PM2.5や O3の健康影響

評価などにも利用されており，指標値を補正可能で

あるが，当然その頻度分布や経時変化・空間分布の

バイアスを補正することはできない。 

平均濃度に加えて，観測値とモデル計算値の頻

度分布を一致させるバイアス補正手法として，順序統

計量を用いた分位マッピングが挙げられる。この手法

も気候変動の影響評価や大気化学分野で広く活用

されている。この手法では，累積頻度別に，濃度比

（Eq.(1)）や濃度差（Eq.(2)）を指標に補正計算を実施

する[渡辺, 2020]。 

𝑅 = 𝑆′ 𝐹!"#(𝐹$%(𝑆′)) 𝐹&"#(𝐹$%(𝑆′))⁄    (1) 

𝑅 = 𝑆′ + 𝐹!"#(𝐹$%(𝑆′)) − 𝐹&"#(𝐹$%(𝑆′))   (2) 

ここで，R はバイアス補正後の計算値，S’は CTM 計

算値（予測データ），SはCTM計算値（訓練データ），

FOは実測値Oの累積頻度分布，FSは Sの累積頻度

分布，F–1は逆関数を表す。 

これら従来手法と比べて，機械学習モデルでは2.1

に示した入力データ（説明変数）から自動で特徴を抽

出して，高精度で濃度推計が可能という利点を持つ。

大気汚染物質のマッピングの目的では，アンサンブ

ル学習法（ランダムフォレスト: RF，勾配ブースティン

グ決定木: GBDTなど）やニューラルネットワーク（NN）

が選択されることが多い。RF は複数の決定木（木構

造による予測規則）を多数集約して予測を行うアンサ

ンブル学習法である。各決定木は，訓練データの復

元抽出によるブートストラップサンプルと，分岐時の

説明変数のランダム選択を組み合わせて独立に構

築される。この二重のランダム性により決定木間の相
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関が低下するため，過学習に強いという特徴を有す

る。GBDTは弱学習器を逐次的に積み重ねて誤差を

段階的に修正するアンサンブル学習法であり，損失

関数の勾配情報を利用してモデルを効率的に改善

する点に特徴がある。NN は入力層・隠れ層・出力層

から構成され，各層で線形変換と非線形活性化（線

形出力に非線形性を付与する関数処理）を繰り返す

ことで複雑な非線形関係を学習する。濃度マッピング

には局所領域の特徴を抽出する畳み込み演算を用

い，空間構造の学習に優れた畳み込みニューラルネ

ットワーク（CNN）が選択されることが多い。手法ごと

にハイパーパラメータへの感度，空間構造を含む特

徴抽出能力，必要なデータ量や計算速度が大きく異

なるため，目的やデータ特性に応じて適切な手法を

選択する必要がある。これらの機械学習モデルは従

来の線形回帰モデルと比べて PM2.5や O3の濃度場

を高精度で推計可能であることが様々な先行研究で

示されている[例えば，Dong et al., 2020]。 

 

2.3 検証手法 

CTM バイアス補正や濃度マッピングなどに機械学

習モデルを導入する目的は，既知データから学習し

たモデルを用いて未知データを適切に予測すること

である。そのためには，モデルが訓練データに過度

に適合する過学習や，十分に学習できていない未学

習を防ぎ，汎化性能を正しく評価する検証が不可欠

である。そこで，利用可能なデータを訓練データとテ

ストデータに分割し，訓練データを用いてモデルを学

習させ，テストデータでモデルの汎化性能を評価す

る。安定した性能評価のため，データを複数のサブ

セットに分割して学習と評価を繰り返す交差検証

（CV）が主に利用されている。CV の代表的な方法と

して，データを k等分して学習と検証を繰り返す k分

割交差検証や 1 サンプルのみを検証用に残して学

習・検証を繰り返す leave-one-out 交差検証などがあ

る。また CVに加えて，モデル構築に利用しない独立

データによる外部検証もモデルの拡張性を評価する

うえで有効である。 

なお，大気汚染物質濃度は地理的に近接した観

測点間で高い相関を示すという空間的自己相関を有

する。この性質により，通常のランダム抽出に基づく

CV では，訓練データとテストデータが空間的に近接

するためモデル精度を過大評価する傾向が生ずる。

空間自己相関の影響を適切に排除するためにはテ

スト地点の周囲に一定のバッファ距離を設定し，その

範囲に含まれるデータを訓練データから除外した上

で交差検証を実施するなどの工夫が必要である

[Shen et al., 2024]。 

モデル検証の評価指標には，平方平均二乗誤差

（RMSE），標準化平均バイアス（NMB），ピアソン相

関係数（PCC）などが利用される（それぞれの計算式

は図 1の標題参照）。 

 

3．適用事例 

3.1 オゾンのバイアス補正 

O3 によるヒト健康被害や農作物収量低減などを定

量的に評価するためには O3 ばく露量と用量反応関

数（O3 ばく露量とその環境影響の関係式）の情報が

必要である。O3 のばく露量推計には CTM のデータ

が利用されることが多いが，CTM は北半球陸域での

O3 濃度の過大バイアスなどの問題を抱えているため

[Young et al., 2018]，バイアス補正が必要である。本

節では，O3 の環境影響評価を目的として，筆者らが

実施したバイアス補正の簡易手法（手法 1: 平均濃

度比，手法2: 分位マッピング）と機械学習モデル（手

法 3: RF）の比較結果を紹介する[木村ら, 2023]。 

バイアス補正はモデル構築・モデル検証・モデル

計算の順に進めた。モデル構築・検証では，測定局

を重複無しでランダムに分割する 5 分割交差検証を

実施した。全体の 80%の訓練データでモデルを構築

し，残り 20%のテストデータでバイアス補正モデルの

計算精度を評価している。その後，CTM などのグリッ

ドデータを説明変数として，構築済みのモデルを計

算することで，バイアス補正された O3濃度場（グリッド
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データ）を推計した。 

5分割交差検証による再現性検証結果を図 1に示

した。バイアス補正前の CTM は O3濃度（1 時間値）

を過大評価し（NMB = 39%），PCCは0.59だった （図

1(a)）。簡易的な手法 1・2 は，1 時間値のバイアスを

ゼロに改善するものの，PCCはバイアス補正前からほ

とんど改善しない。それに対して，機械学習モデルは

1 時間値のバイアスをゼロにするとともに，PCC（= 

0.90），RMSE（= 7.4 ppb）ともバイアス補正前と比べて

顕著に改善していた（図 1(a)–(d)）。このように，簡易

的手法でも平均的なバイアス補正は可能だが，時空

間分布のバイアスを適切に補正するためには機械学

習モデルが有効であることが分かる。 

続いて，O3による健康影響評価指標（日最高 1 時

間値: DMA8h），および農作物収量への影響評価指

標（閾値である 40 ppbを超える 1時間値の閾値超過

分を積算したO3ばく露量: AOT40）のバイアス補正前

後の推計精度を評価した。その結果，手法 1 では高

濃度時の補正が不十分であるために，DMA8h のバ

イアスは 1 時間値よりも大きくなっていた（NMB = –

13%）。手法 2 ではバイアスは低減するが PCC は改

善されず，手法 3が RMSE（6.0 ppb），PCC（0.92）とも

最も良好なスコアを示した。 

AOT40 は閾値を有するため，1 時間値や DMA8h と

比べてモデルごとの精度のバラつきが顕著である（図

2）。バイアス補正前の CTM は平均的に AOT40 実

 
図 1 O3濃度の 1 時間値(a-d)・日最高８時間値(e-h)の実測値・モデル計算値の２次元ヒストグラム。CTM の出力(a,e)，平均

濃度比補正(b,f)，分位マッピング補正(c,g)，ランダムフォレスト(d,h)。スコアは NMB（標準化平均バイアス: ∑(𝑀! −𝑂!) /
∑𝑂! ) ， RMSE （ 二 乗 平 均 平 方 根 誤 差 : ((∑(𝑀! −𝑂!)" /𝑛 ) ） ， PCC （ ピ ア ソ ン 相 関 係 数 : ∑[(𝑀! −𝑀+!)(𝑂! −𝑂,!)] /
(∑(𝑀! −𝑀+!)"∑(𝑂! −𝑂,!)"），Miと Oi はそれぞれ計算値と実測値，乗船は平均値，n はサンプル数を指す。 

 
図 2 AOT40（閾値である 40 ppb を超える 1 時間値の閾値超過分を積算した O3 ばく露量）の実測値(a)，及びモデル計

算値(b-e)。 
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測値を 2.26 倍過大評価しており，水平分布も適切に

再現していない（PCC= 0.31）。手法 1 で推計した

AOT40 は NMB＝–42% と顕著に過小評価してい

た一方で，RMSE とPCC のスコアは手法 3が最も良

好であった。手法 3 のみが，AOT40 が北関東で高く

東北・北海道・南九州で低い地域分布を再現してい

た。このように，機械学習モデルを利用することで O3

による健康影響・農作物影響の指標値を時空間的に

高精度でバイアス補正できることが示された。 

 

3.2 PM2.5のバイアス補正 

衛星観測データやCTMを利用した PM2.5のマッピ

ングは全球，および地域ごとに多数実施されて，環境

影響評価や疫学研究に活用されてきた。このマッピ

ングは，地上観測が不足する地域における濃度場推

計に加えて，地上観測が実施されていない期間の濃

度場構築という目的においても有用である。例えば，

中国では 2013 年以前の PM2.5観測データが少ない

ため，それ以前のデータを補うために機械学習モデ

ルを活用したマッピングが多数実施されている[例え

ば，Xiao et al., 2018]。日本においても PM2.5のモニ

タリング開始は 2010 年であり，それ以前の PM2.5濃

度の観測データは非常に限られているため，PM2.5

への長期曝露と健康影響の関連性を評価した疫学

解析が限られている。そこで筆者らは，PM2.5 のモニ

タリングが開始される以前の期間を含む PM2.5 の曝

露データを構築するために，機械学習モデルを構

築・計算した[森野ら, 2025]。地球統計学モデル（通

常クリギング法）や全球を対象とした機械学習モデル

結果（SatPM2.5, Shen et al., 2024）との比較結果と合

わせて紹介する。 

通常クリギング法では地上観測データを内挿する

ことで 2010年–2020年における PM2.5濃度場を推計

した。一方，機械学習モデルでは 2012年–2020年を

訓練・検証期間とし，構築したモデルを基に，2000年

–2020 年の計算を実施した。いずれの手法でも，日

本全国における 15 km メッシュの PM2.5の日平均値

を推計した。機械学習モデルでは lightGBM を選択

し，ハイパーパラメータの最適化には optunaパッケー

ジを利用した。説明変数に気象モデル（WRF v4.1.5）

と化学輸送モデル（CMAQ v5.3.2 ）の計算結果

[Chatani et al., 2023]，および大気常時監視局で測定

された 4成分（SPM, Ox, NO2, SO2）の通常クリギング

結果を利用した。利用可能な PM2.5の地上モニタリン

グ地点数は 2008 年以前に 5–8 地点であったが，

徐々に増加して，2017年以降は 800地点以上となっ

た。 

lightGBMで推計された PM2.5日平均値の CVスコ

アは，2012 年以降は通常クリギングよりもわずかに低

いものの，バイアスは±3%以内であった。利用した

観測地点数が 105 地点の 2011 年には通常クリギン

グと同程度であり，同 34 地点だった 2010 年では通

常クリギングよりも高スコアであった。また，観測デー

タが不十分な 2010 年以前における独立データとの

検証においても，PM2.5 濃度は概ね±6%以内のバ

 
図 3 2002 年度，2010 年度，2018 年度における PM2.5平均濃

度の実測値(a-c)とモデル計算値(d-i)。CV スコアは月平均値

を基に計算 
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イアスで再現された（図 3 (d)-(f)）。一方，上述の

SatPM2.5 では，2000 年代前半に 20–30%程度の過

小評価，2010年代後半には 20–40%の過大評価と経

年的なバイアスが発生していた（図 3(g)-(i)）。推計・

検証条件が異なるため厳密な比較はできないが，大

気汚染物質濃度は自然現象のみでなく地域ごとの社

会・経済活動や汚染対策などの政策の影響を受ける

ため，地域ごとの状況を考慮したマッピングが必要で

あることを示唆している。 

 

4．結語 
近年，大気化学分野においても物理モデル（CTM

や気象モデルなど）に加えて，データ駆動型モデル

（機械学習モデルなど）の利用が急速に進んでいる。

本稿で紹介したモデルは比較的単純な機械学習モ

デルであるが，全球大気質予報，時系列予測，ダウ

ンスケーリング[Wong et al., 2024; Sekiyama et al., 

2023]など様々な分野において，データ駆動型モデ

ル（主に深層学習モデル）は従来の物理モデルに匹

敵する精度の計算を，圧倒的高速で実現可能として

きた。従来よりビッグデータを扱うことの多かった大気

化学研究分野はデータ駆動型モデルとの相性は良

いため，物理モデルとデータ駆動型モデルを相乗的

に活用することで，今後のさらなる研究の発展が期待

される。 
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反応速度論に基づく大気化学反応機構の解明 

Kinetic study of atmospheric chemical reactions 
 

秦寛夫 1 * 
 

大気現象の根本には，原子レベルの結合の変化を伴う「化学」が介在している。化学変化が実現象と

して進行するか否かを議論するためには，反応速度論による検討が不可欠である。本稿では，筆者が

大気化学に関わる反応速度論研究の一端として進めてきたテーマである，化学輸送モデルを用いた

クリーギー中間体（CI）の大気環境影響評価や，反応実験による CI の不均一反応場におけるモデリン

グ，および理論計算による反応速度定数算出に関する研究について，既往研究のレビューと共に全

体像を示す。合わせて，筆者の具体的な業績として，これまで明らかにされていなかった振動励起状

態 CI と安定化 CI のエアロゾル生成への寄与や，有機過酸化ラジカルと二酸化硫黄の反応速度定数

が低いことの由来，不均一反応場における CI の化学に関する大気環境影響評価に関連する研究に

ついて概説する。 

 

 

1．はじめに 

この度は第 21 回日本大気化学会奨励賞という大

変名誉ある賞を授与して頂き誠にありがとうございま

す。発展途上な側面も多分にあり，今後もっとがんば

れという激励とも受け取っております。私が大気化学

の分野に足を踏み入れたのは，本稿執筆時点から

10 年前の 2015 年に遡ります。当時勤務していた東

京都から東京都環境科学研究所に出向したことがき

っかけで，始めは自動車に由来する揮発性有機化

合物（VOC）等の大気汚染物質排出量の評価や排

出量推計モデルの構築，化学輸送モデルによる大

気環境影響に関する研究を行っていました。2021 年

に現所属である産業技術総合研究所に移ってから

は，大気化学と物理化学の橋渡しとなる研究を進め

ており，特に対流圏の大気化学や大気汚染の観点

からヒトや自然生態系の保全に資する研究成果とな

るよう精進しているところです。 

現在，大きく分けて二つの研究テーマに取り組ん

でいます。一つ目のテーマは，気候変動や都市気候

変化，次世代技術導入に伴う対流圏のオゾンや微小

粒子状物質濃度変化に関する評価研究であり，主に

行政の基礎的知見となりうる成果となるよう取り組ん

でいます。二つ目のテーマは，クリーギー中間体に

関する反応速度論や化学輸送モデリング，その大気

中エアロゾル生成への寄与の評価に関する基礎的

な研究です。一つ目のテーマは別学会誌で今後総

説を執筆する予定であることから，本稿では二つ目

のテーマであるクリーギー中間体の化学や関連する

反応速度論に関する研究について，先行研究のレビ

ューと自身で進めてきた成果について概説します。 

 

2．クリーギー中間体の大気化学の背景 

クリーギー中間体（Criegee intermediate; CI）は，

C=C 二重結合を有するオレフィンのオゾン（O3）によ

る酸化反応で生成するカルボニル中間体の総称で

ある。その化学的な歴史は 1900 年代初頭まで遡り，

1949 年に Rudolf Criegee により 9, 10-Octalin の O3

酸化反応機構が提唱されて，CIの存在が予言された
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[Criegee and Wenner, 1949; Hassan et al., 2021]。反

応機構の概略は図 1 に示した通りであり，オレフィン

の二重結合に O3 が付加して一次オゾニド（primary 

ozonide; POZ）を形成し，その後に振動励起状態の

CI（vibrationally-excited CI; vCI）とカルボニル化合物

（ケトンまたはアルデヒド）に分解する。さらに vCIは窒

素等の不活性な第三体ガスと衝突して安定化 CI

（stabilized CI; sCI）となる。 

大気化学分野においても CIの大気素反応への寄

与は予想されていたが，その反応性の高さ故に直接

的な大気観測や反応速度定数の算出には至らなか

った。2008 年にアメリカの研究グループが，塩素ラジ

カルによるジメチルスルホキシドの水素引抜反応と，

その後の酸素分子（O2）との衝突で生成する最も単

純な CI，ホルムアルデヒドオキシド（CH2OO）を，光イ

オン化質量分析法により定量的に検出することに成

功した[Taatjes et al., 2008]。さらに，2012年にアメリカ

のグループが世界で初めてジヨードメタンの光分解と

後続の O2 付加反応を誘起することで，CH2OO の気

相合成と光イオン化質量分析法による CI の検出，

CH2OO と一酸化窒素（NO），二酸化窒素（NO2），二

酸化硫黄（SO2），水分子との反応速度定数を算出す

ることに成功した[Welz et al., 2012]。それ以降は類似

の気相合成手法を用いた上で，CI の検出に近赤外

レーザー吸収分光法を用いた計測手法の確立が行

われ[Su et al., 2013]，より分子量が大きく，幾何異性

体を有する CIにも適用されたと同時に[Taatjes et al., 

2013]，上述の NO，NO2，SO2，水に加え，その他

種々の大気中化学物質との反応速度定数やオリゴ

マー化を含む反応動態の解明が実験的，理論的手

法で行われている [Sakamoto et al., 2013; Qiu & 

Tonokura, 2019; Chhantyal-Pun et al., 2020; Caravan 

et al., 2024]。特に CI と SO2やギ酸・酢酸等の有機酸

との反応速度定数は 10-11 ~ 10-10 cm3 molecule-1 s-1と

衝突限界に近いことから，その後の化学輸送モデル

（CTM）による CI の大気環境影響の試算に関する研

究において，大気化学的なインパクトの高さが示され

てきた [Khan et al., 2018; Caravan et al., 2020; 

Caravan et al., 2024]。大気圧下では大気中化学物

質との二体反応のみならず，不活性ガスとの衝突エ

ネルギー移動と非断熱的結合解離による CI 自身の

分子内異性化反応でOH ラジカルを生成する反応機

構も存在し，CI の大気消失過程の主要因とされてい

る[Kidwell et al., 2016; Vereecken et al., 2017; Lester 

& Klippenstein, 2018]。以上より，気相中 CIの反応速

度論に関する研究課題は無数にあり，反応速度論研

究者や大気化学者を中心に実験や観測手法の改良

がなされながらも，今なお魅力的なトピックとして成長

を続けている。 

他方，アルケンの O3 酸化反応は元来，有機化学

分野，特に薬剤や化粧品の生成過程で議論されるこ

とが多く，大気化学で議論され始めたのは 1970年以

降であった[Hassan et al., 2021]。有機合成等の液相

（バルク）反応では生成した CI が，同じくアルケンの

O3酸化反応で生成したカルボニル化合物と再結合し，

二次オゾニド（secondary ozonide; SOZ）を生成する後

続反応が進行する。大気中の微小粒子表面や雲内

における，気液界面やバルク内においては有機化学

系と同様に SOZ が生成することが知られており，さら

に分解してカルボン酸となり，バルクの酸性度を上昇

させる[Wang et al., 2023]。また，気液界面やバルクで

は溶媒和効果や気液界面における不完全な水和に

起因する分子間の水素移動反応が生じることに加え，

バルクの拡散律速性など反応以外の要因も絡み合う

複雑な系を形成し，気相とは異なる速度論的性質を

有する[江波, 2024]。気液界面やバルクにおける CI

の化学は，質量分析法を用いた生成物解析や分子

動力学計算を用いた気液界面反応のモデリングによ

り，CIと水やカルボン酸が反応することで有機過酸化

 

図 1 アルケンの O3酸化反応によるクリーギー中間体の生

成メカニズム（Hata et al., 2025a (CC-BY-NC 3.0)）。 
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物の生成反応が生じうること，気液界面における反応

の寄与が高いことが明らかにされている[Zhu et al., 

2016; Enami, 2017; Zhong et al., 2017; Qiu et al., 

2018]。さらに，気液界面/バルク内反応をよりマクロな

視点から捉える，所謂反応拡散方程式，またはその

方程式系の拡散項の二階偏微分の線形近似に基づ

く多相反応モデルが提唱されており，CI の化学を含

む不均一反応の理論的な解明が進められている

[Smith et al., 2003; Shiraiwa et al., 2013; Gallimore et 

al., 2017; Berkemeier et al., 2021]。 

筆者が関係するグループにおいても，CIの化学に

関して実験と理論計算，CTM による研究を進めてき

たため，すでに論文化されている内容を中心に概要

を記す。 

 

3．気相系の反応速度論 

3.1 気相系クリーギー中間体の化学輸送モデリング 

CTM を用いた CI によるエアロゾル生成に関する

大気環境影響評価研究は 2010年以降，国内外の研

究者により領域・全球規模で様々な試行がなされて

いるが，そのエアロゾル，特に硫酸エアロゾル（SO4
2-

(p)）生成への寄与率の推計値は文献により大きく異

なり，1~20 %の幅がある[Percival et al., 2013; Sarwar 

et al., 2014; Vereecken et al., 2017; Khan et al., 2018; 

Newland et al., 2018]。計算対象とする地域の違いや

用いるモデルの違いなど，幅があることには様々な要

因が考えられるが，組み込む反応を如何に精緻にす

るかということが一つの重要な因子となる。特に初期

の研究では CIの単分子異性化反応が組み込まれて

いなかったことや，水の二量体と CI の反応速度定数

が過小評価であったことから，CI 濃度の過大評価が

あったと推察される。また，多くの既往研究では sCI

による NO2や SO2等の酸化反応を考えているが，上

述のように CI 生成直後の vCI は即座に単分子解離

し，OH ラジカルを生成する。このOH ラジカルがNO2

や SO2 等を酸化することでもエアロゾル生成に寄与

するが，この vCI 経由のエアロゾル生成への寄与を

定量的に示した事例は無かった。Hata et al. [2025a]

では，2023 年頃までに既往研究の実験や理論計算

で得られている，sCI と NOや NO2，SO2，有機酸との

二次反応速度定数や sCI の単分子解離反応速度定

数，水との反応速度定数をレビューして全球 CTMに

組み込み，さらに水の一量体と二量体の平衡定数を

考慮して水と sCI の反応速度定数を精緻化するなど

の工夫をし，CI のエアロゾル生成への影響を評価し

た。さらに，vCI から sCI に失活する割合を既往研究

から仮定し[Saunders et al., 2003]，定量的に明らかに

なっていない vCIの単分子解離反応経由の OH ラジ

カルによるエアロゾル生成への寄与を，感度解析で

評価した。 

CIが SO4
2-(p)の生成に与える影響（寄与率）を図 2

に示す。年間平均の寄与としては最大でも 0.5 %程

度であり，これまでに主張されてきた寄与率（＝最大

で 20%程度）と比較すると低い寄与であることが示さ

れた。また，アマゾン熱帯雨林やオーストラリアの熱

帯雨林地域等の BVOC排出量の多い地域で，CIの

SO4
2-(p)生成への寄与が大きいことがわかる。ちなみ

にオーストラリアの中央以南でも CI の寄与が大きい

が，こちらは砂漠地帯に生育しているユーカリに由来

する[Guenther et al., 2006; Winters et al., 2009]。 

中国（CHI：北京），インド（IND：デリー），南アフリ

カ共和国（ZAF：ケープタウン），オーストラリア（AUS：

シドニー郊外），およびボリビア（BOL：アマゾン熱帯

雨林）の 5 地域における，sCI と vCI の SO4
2-(p)生成

への相対感度の試算の結果を図 3 に示す。CHI や

IND，ZAFは都市域に対応するが，sCIと比較し，vCI

 

図 2 クリーギー中間体の硫酸エアロゾル生成（ΔSO4
2-(p)）

への年平均寄与（Hata et al., 2025a (CC-BY-NC 3.0)）。 
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に由来する OH ラジカルと SO2の反応が SO4
2-(p)生

成に支配的であった。一方で，遠隔地に対応する

AUS と BOL では sCI と vCI の寄与が同程度であっ

た。都市域では NO2や HNO3等の sCIのスキャベン

ジャが多く，SO2との反応が抑制されることが，都市域

で sCIの SO4
2-(p)生成への相対感度が低い理由と考

えられる。先行研究では，sCIの反応速度に関する実

験データが多く算出されてきているが，オレフィン化

合物の O3酸化反応という視点では，sCI の化学は主

に遠隔地域で特に重要であることを示した結果であ

る。 

上述のように，本研究の試算では，CI の寄与は，

年間平均で最大でも 0.5%という結果であり，よってそ

もそも CI の化学は大気環境にほとんど影響しないの

ではないかという疑問が生じる。本試算は全球 CTM

で実施しており，その格子解像度は 2° × 2.5°であっ

た。CIの化学反応速度はCIや反応体の濃度に比例

し，かつ Arrhenius 式から気温に対しては指数関数

的に比例する。粗な格子解像度の試算では，一つ一

つの格子内の物質濃度や気象場を平均化して取り

扱う。よって，たとえば局所的に VOC や O3，SO2等

の前駆物質濃度や気温が高い格子があると，本来は

CI によるエアロゾル生成への寄与が高くなるべき地

点においても，その現象を再現できない可能性があ

る。Hata et al. [2023]と Nakamura et al. [2023]では，

同様の化学反応メカニズムを用いて，アジア域（格子

解像度 45 km × 45 km）や日本の関東域（格子解

像度 5 km × 5 km）で CI の寄与を試算した。BVOC

の排出量が少ない関東では，CIの SO4
2-(p)生成に対

する寄与はほぼゼロであった一方，特に東南アジア

域においてイソプレンに由来する CI が最大で 3%弱，

エアロゾル生成に寄与している可能性が示唆された。 

近年は CI とアミン水和物やフッ素化オレフィンとの

反応速度定数が高いこ と も報告 されてお り

[Chhantyal-Pun et al., 2019; Watson & Beames, 2023]，

CI によるエアロゾル生成や他大気汚染物質の消失

過程への寄与を，CTM を用いてより精緻に見積もっ

ていく必要がある。 

 

3.2 有機過酸化ラジカルと SO2の反応 

有機過酸化ラジカル（RO2）は中程度の酸化剤とし

て知られ，特に NO と反応して NO2 の再生成による

HOXサイクルの促進がよく知られている。CIの大気化

学研究に取り掛かると同時に，一つの疑問が出た。

CI と SO2の反応速度定数は~10-11 cm3 molecule-1 s-1

と大きいのに，なぜ RO2 と SO2の反応速度定数には

着目されてきていないのかということである。文献調

査をしたところ，理論計算でHO2やメチルペルオキシ

ラジカル，エチルペルオキシラジカル等と SO2の活性

化エネルギーを算出している先行研究があり，反応

の活性化エネルギーは高く，反応はほぼ進行しない

ことが示唆されていた[Kurtèn et al., 2011]。ただ，具

体的な反応速度定数に関する記述はなく，よって反

応速度定数を見積もることや，本当に大気環境影響

が無いのかを検証することは，基礎的知見という意味

での意義があるのではと考えた。そこで，Hata & 

Tonokura [2024]では，全球 VOC排出量の 60 %以上

を占めるとされるイソプレンの，OH ラジカルによる酸

化反応経由で生成する RO2， isoprene hydroxy 

hydroperoxyl radical （ISOPOO）を対象とし，SO2との

 
図 3 安定化クリーギー中間体（sCI）と振動励起クリーギー

中間体（vCI）の硫酸エアロゾル生成（ΔSO4
2-(p)）への感度

（Hata et al., 2025a (CC-BY-NC 3.0)）。 
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反応速度定数を理論計算で算出した。 

反応速度定数は，Eyring の式に基づく古典的遷

移状態理論（CTST）と，一部，単分子解離反応の圧

力依存性に関 し ては Rice-Ramsperger-Kassel-

Marcus（RRKM）理論と，窒素等の雰囲気ガスとの衝

突に伴う振動エネルギー移動方 程 式 （Master 

equation; ME）を組み合わせた，RRKM/ME 法により

算出した[Gilbert & Smith, 1990]。また，CTST や

RRKM/ME 計算で必要となる，反応に関わる分子の

構造情報（＝分子座標）とエネルギー情報（＝分子

振動エネルギー，零点エネルギー，高精度一点 0 K

エネルギー）を量子化学計算で算出した。ISOPOO

には 6 種の構造異性体が存在するが，本稿では例と

して 1,2-ISOPOO と SO2の反応の結果を述べる。 

量子化学計算で得られた 1,2-ISOPOO と SO2の反

応エネルギー図を図 4 に示す。1,2-ISOPOO と SO2

の反応は遷移状態 1,2-TS1 を経由し，反応中間体で

ある 1,2-ISOPOOSO2 を生成する。その後， 1,2-

ISOPOOSO2 の単分子解離反応でアルコキシラジカ

ル ISOPOと SO3に分解することが示された。CTST計

算の結果，ISOPOO + SO2 から ISOPOOSO2 を生成

する反応の速度定数は温度 300 K において~10-21 

cm3 molecule-1 s-1程度で，CI + SO2の反応速度定数

と比較すると 10 桁のオーダーで低い値であった。一

般に RO2 と CI の大気中濃度はそれぞれ 108 と 10 

molecule cm-3 程度であり，よって RO2 と SO2の反応

速度は CI + SO2と比較し，10-21 × 108/10-11 × 10 = 10-

3 だけ低いことが示 された。さらに，図 4 より

ISOPOOSO2の単分子解離反応のエネルギー障壁は

逆反応よりも高いことがわかる。RRKM/MEにより，単

分子解離反応パスへの分岐比を算出した結果，最

大でも 10-2 程度であることがわかった。このことから，

ISOPOO + SO2から SO3を生成する反応の総括反応

速度定数は 10-23 cm3 molecule-1 s-1以下であり，SO2

の酸化反応速度は CI と比較し 10-5倍小さいこと，よ

って SO4
2-(p)を含む実大気中のエアロゾル生成には

ほとんど影響が無いと結論付けた。 

 

4．気液界面/液相系のクリーギー中間体のモ

デリング 

気液界面/バルク系のCIの化学に関しても，3章で

実施してきた化学輸送モデリングと類似の手法で大

気中エアロゾルの生成能評価に適用できないか検討

している。1 章で言及したように，気液界面/バルク内

の物理化学挙動は不均一性を有することから，均一

系である気相のように反応速度定数を解析解型で定

式化することは困難である。一方で，気液界面/バル

ク内のCIの動的挙動は，反応拡散方程式でモデリン

グされてきている[Smith et al., 2003; Shiraiwa et al., 

2013; Gallimore et al., 2017; Berkemeier et al., 2021]。

反応拡散方程式モデルでは，気相中 O3の気液界面

での吸脱着と反応に始まり，バルクとの物質交換，バ

ルク内での反応と拡散を定義しており，CI の化学に

限らず気液界面とバルク内の動的反応過程を記述

することが可能となる。反応拡散方程式モデルを用

いて，様々な環境条件下における気液界面/バルク

反応過程の総括反応速度定数をパラメタライズし，

CTM に組み込んでオレフィンの O3 酸化反応の大気

環境影響を評価することを目標に研究を進めている。 

反応拡散方程式モデルの構築や検証のモデル物

質として，高炭素鎖不飽和脂肪酸であるオレイン酸

 

図 4 1,2-ISOPOO と SO2の反応エネルギー図。反応は遷

移状態1,2-TS1 を経由して中間錯合体1,2-ISOPOOSO2を

形成後，遷移状態 1,2-TS2 を経由して SO3を生成（Hata & 
Tonokura, 2024 (CC-BY-3.0)）。 
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やスクアレン，生体内代謝過程で重要なアコニット酸

などが用いられている[Shiraiwa et al., 2013; Willis & 

Wilson, 2022]。高炭素鎖不飽和脂肪酸は C=C 二重

結合を有するので，O3 酸化反応による CI 経由の物

理化学過程の研究に適していること，分子量が大きく

蒸気圧が低いことから反応の追跡が行いやすいこと

が考えられる。また，オレイン酸とスクアレン共に，植

物油の成分であることから，調理用油の使用により，

実大気に排出されるという点からも，大気中における

動態解明が必要であったということが，研究が盛んに

進んできた理由である[Hou et al., 2025]。Hata et al. 

[2025b]では，気液界面/バルクにおけるオレフィンの

O3 酸化反応の総括反応速度定数をパラメタライズす

るべく，反応拡散方程式モデルを新たに構築し，オ

レイン酸の O3 酸化反応によるオレイン酸濃度の減衰

を再現できるか検討した。 

手法としてはまず，セレン化亜鉛（ZnSe）窓材に，

エタノールで希釈したオレイン酸を塗布後，乾燥させ

ることでオレイン酸の薄膜を作製した。ZnSe窓材をガ

ラスセルに取り付け，FTIR 内に設置後に O3 を流入

し，オレイン酸の O3 酸化反応を誘起した。FTIR でオ

レイン酸の C=O 伸縮振動の吸光度を経時的に計測

することでオレイン酸の減衰速度を算出した。様々な

オレイン酸濃度で薄膜を作製することで膜厚を変化

させ，減衰速度の膜厚依存性を計測した。構築した

反応拡散モデルが実験結果を再現するか検証した。 

横軸にOA薄膜の膜厚，縦軸に実験と反応拡散方

程式モデル計算で得られたオレイン酸とO3の総括反

応速度定数 kOAを図 5 に示す。膜厚が薄くなるにつ

れ，kOA が増加しているが，これは膜厚が薄いほど反

応活性な界面や界面付近バルクの影響が強くなるこ

とに起因する。反応拡散方程式モデルは，膜厚 0.5 

μm 付近の極薄の結果を除き，実験結果をよく再現で

きることを示した。また，反応拡散モデルを用いて気

液界面とバルクのいずれが OA + O3の反応に寄与し

ているか感度解析を実施したところ，膜厚に依らず 8

割は気液界面付近での反応が主であり，残りの 2 割

がバルク内反応に起因することを示した。これらの反

応は，反応速度定数と比較し拡散係数の方が 4倍感

度の高い拡散律速の系であることを示した。 

 

5．まとめ 

本稿では CI の大気環境影響評価に関して，これ

までに実施してきた研究について概説した。特に気

相系の CI の反応速度論については，世界中の物理

化学者や大気化学者が実験的・理論的に速度定数

を算出しており，速度定数の算出という意味では大

枠のデータは出そろっていると考えられる。ただ，CI

やその反応物は無数にあり，それらの速度定数の情

報を蓄積していくことは，物理化学として重要である。

一方でCIの大気環境影響については，CTMの不確

実性や不均一性の問題から，今回ご紹介した結果を

含め，本当に結果が妥当なのか更なる検証が必要と

考えられる。これは CI の反応に限らず，その他の大

気化学反応についても同様のことが言える。 

冒頭で述べたように，現在の研究テーマの大枠と

して，①次世代技術導入による大気環境影響の評価

と，②本稿でご紹介した CI を含む大気化学反応速

度論に関する研究を実施してきている。①のテーマ

が筆者の本業であり，二足の草鞋を履いているため，

一つ一つの内容を深堀することがまだできていないと

ころがあるが，これからさらに時間をかけて大気化学

 

図 5 実験と反応拡散モデルによるオレイン酸のオゾン酸

化反応速度定数 kOA の膜厚依存性（Hata et al., 2025b 

(CC-BY-NC-4.0)）。 
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の本質をとらえた研究に昇華させていき，国内外の

大気化学コミュニティに対して貢献していきたいと考

えている。  
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PAN-PGN joint Workshop への参加報告 

猪俣敏 1 * 

2025年 11月 10日（月）－12日（水）の 3日間，韓

国ソウルにおいて，Pandora Asian Network (PAN)-

Pandonia Global Network (PGN) joint Workshopが，

National Institute of Environmental Research (NIER)，

NASA ， ESA ， LUFTBLICK ， SciGlob ， EPA ，

EUMETSAT の共催で開催された。Pandora装置は，

太陽追尾機能を備えた光化学センサーヘッドと回折

格子型の紫外・可視高度分光計（波長域：280-525 

nm）からなる地上観測リモートセンシング装置で，二

酸化窒素（NO2），ホルムアルデヒド（HCHO），オゾン

（O3），二酸化硫黄（SO2）のカラム全量（対流圏カラム

量）が測定可能である。PGNは LUFTBLICK（NASA

が資金提供して設立されたオーストリアの会社で，そ

の後 ESA も資金提供している）が管理する全世界の

Pandora装置の観測網で，PANはNIERが設立した，

韓国，モンゴル，バングラディシュ，東南アジア諸国

の観測網であり，NIERはLUFTBLICKのアジアの観

測網の管理を任されているため，今回の PAN と PGN

の joint でのワークショップ開催となった。PGN 

Workshopはこれまで 2回（2015年と 2023年）開催さ

れている。PAN は 2022 年からこれまでに毎年，計 3

回開催されてきた。本ワークショップは，ハイブリッド

での開催で，現地参加者は約 60 名，リモートからの

講演は 8 件あった。また，関係者のリモートでの聴講

も可能であった。 

初日は，NIER の Ji-won Seong 氏，LUFTBLICK

の Alexander Cede 氏，NASA の Apoora Pandey 氏

（予定していた Emma Knowland 氏や Tom Hanisco

氏は来られなかった）からの開会のあいさつの後，

LUFTBLICK か ら Alexander Cede 氏 ， Martin 

Tiefengraber 氏，Manuel Gebetsberger 氏，ESA から

Angelika Dehn 氏，NASA から Apoora Pandey 氏，

Bryan Place 氏，SciGlob から Omar Abuhassan 氏が

それぞれ基調講演を行った。特に，Omar Abuhassan

氏からは，最近起こっているトラブルに対処した改良

点の紹介等があった。その後，私の講演を含む，3件

の一般講演があった。 

私の講演は，「Introduction of activities of Japan 

Pandora Network (JPN)」という講演タイトルで，今年 6

月に打ちあがった温室効果ガス・水循環観測技術衛

星 GOSAT-GW （センサー：TANSO-3 ）の紹介と

TANSO-3 で観測する NO2 の検証が主な目的として

 

 
写真 1 （上段）ワークショップが開催されたホテル。

（下段）ワークショップ会場 
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国立環境研究所が中心に運営している JPN の紹介

を行った。他の 2 件は，Yonsei University の Jhoon 

Kim 氏による GEMS（Geostationary Environment 

Monitoring Spectrometer ）の最新データの紹介と

Pukyong National Universityの Hanlim Lee氏による

PANの装置の稼働状況の紹介があった。 

二日目は，12件の一般講演と 8件のポスター発表

があった。大気汚染を対象にした研究だけではなく，

極域でのオゾン全量の観測に Pandora装置を用いて

いる講演もいくつかあった。また，Pandora装置をエア

ロゾルの観測に応用している研究発表もあった。 

三日目は，11件の一般講演があった。主にはPAN

から，モンゴル，東南アジア諸国（カンボジア，インド

ネシア，タイ，フィリピン，ラオス），バングラデシュの観

測状況に関する発表があった。その後，事前に受け

付けていた各観測サイトのローカル主任研究者やロ

ーカルオペレータからの装置にテクニカルな質問等

に対して，LUFTBLICK や SciGlob が回答する時間

が設けられた。ワークショップ閉会の前に，Workshop 

Discussionとして，本ワークショップ内での報告，議論

を踏まえたうえで，LUFTBLICK からいくつかの提案

（新しいプロダクトや L3 プロダクトをオフィシャルなプ

ロダクトとするか，など）が出され，議論された。そして

最後に，本ワークショップの講演資料は基本公開さ

れる方針であること，また，次回は 2027年 9月ごろに

ヨーロッパで開催することが案内された。 

本ワークショップに初めて参加して，PGN がどのよ

うに運営・管理されているのか，その一面に触れられ

て為になったと感じている。特に，LUFTBLICK の較

正チームの多くのメンバーが参加しており，彼らが興

味をもって各観測サイトのデータを見ていることが垣

間見れ，また，Data quality flag などについても直接

の説明を聞けて，理解を深めることができた。そして，

アジアでは湿度の問題が共通であることを知ることが

できたり，PGN のアジア担当者やメーカーである

SciGlob の人にも直接会って話すことができ，今後，

JPN の運営に活かすコネクションができたと思う。今

回，日本から私ひとりが対面で参加したが，フランス

の GRASP-EARTH所属の桃井裕広氏に，会場でお

会いした。彼も，二日目に「Simultaneous profiling 

of aerosol and tropospheric nitrogen dioxide from 

synergetic ground-based observations of sun-sky 

photometer, lidar and spectrometer」という講演タイ

トルの一般講演を行った。こういう場で，海外で

活躍する日本人に会えたのことはうれしかった。 
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Report on Participation in the 6th International Workshop 

on Frontiers in Atmospheric Radical Measurements 

Jiaru Li1, 2 * 

１．General information 

The 6th International Workshop on Frontiers in 

Atmospheric Radical Measurements took place at the 

Stanford Center of Peking University in Beijing, China, 

on 23rd and 24th November 2025. Around 50 

participants joined in person or online from China, the 

UK, Germany, France, Japan, and the USA. A brief 

history of the workshop can be found in Table 1. In 

1971, Levi first suggested a method of measuring OH 

concentration using O3 photolysis as the main source of 

OH. The following year, a frequency-doubled dye laser 

was developed for measuring OH at high 

concentrations (1012 molecule/cm3). Since then, 

significant progress has been made in the development 

and application of HOx measurement techniques over 

the last five decades. 
Table 1. A brief history of the HOx workshop. 

Year Theme Location 

1982 Assessment of Techniques for 

Measuring Tropospheric HxOy 

NASA, 

Palo Alto, 

California, 

USA 

1985 Future Directions for HxOy 

Detection 

SRI, 

Menlo 

Park, 

California, 

USA 

1992 Local Measurement of 

Tropospheric HOx 

SRI, 

Menlo 

Park, 

California, 

USA 

2005 Free Radicals in the 

Troposphere: Their 

Measurements, Interpretation 

of Field Data, and Future 

Directions 

Leeds, UK 

2015 Assessment of local HOx and 

ROx Measurement Techniques: 

Achievements, Challenges, and 

Future Direction 

Julich, 

Germany 

2025 Measurement of HOx and ROx 

radicals from ground, ship and 

airborne platforms: Instrument 

Development and New 

Chemistry 

Peking 

University, 

Beijing, 

China 

 

2．Highlight of the 6th workshop 

The 6th workshop introduced a robust set of 

instruments, including laser-induced fluorescence fast 

assay by gas expansion (LIF-FAGE), chemical 

ionization mass spectrometry (CIMS), peroxy radical 

chemical amplification (PERCA) and differential 

optical absorption spectroscopy (DOAS) for measuring 

OH, HO2, RO2, and OH reactivity. Specific issues 

addressed include: 1) OH calibration source and OH 

interferences; 2) HO2 interferences from complex RO2; 

3) data utilization across short-term and long-term 

campaigns. More recently, new techniques for 

measuring OH reactivity and HO2 concentration have 
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emerged using a faraday rotation spectrometer, which 

can selectively measure magnetic-sensitive radicals 

[Fang et al., 2025]. The workshop also addressed the 

active role of women in the HOx community, especially 

their leadership across different countries. 
 

  This workshop included a total of 22 oral 

presentations and two discussion sessions, covering 

new instrumentation and new chemistry. The talks 

focused on the context of instrument development, with 

a particular focus on the LIF-FAGE system. Field 

campaigns were conducted using ground-based, 

aircraft-based, and shipborne observations. The results 

of some campaigns were used to discuss ozone 

production and oxidation capacity [Tan et al., 2026]. 

Additionally, the LIF-FAGE instrument was used in the 

CERN CLOUD Chamber to study isoprene chemistry, 

revealing that the oxidation pathway varies with the 

presence of NOx [Russell et al., 2025]. New methods 

and results for RO2 measurement using CIMS and 

PERCA were introduced. A new idea for OH 

interference in the FAGE system was suggested: 

trioxide ROOOH decomposition [Fittschen et al., 

2019]. In addition to quantifying OH reactivity across 

different in situ and chamber studies, researchers also 

expanded their measurements to HO2 and RO2 

reactivity to investigate the HOx loss during 

heterogeneous processes [Sakamoto et al., 2025]. 

 

 
3．Challenges and outlook 

A Global Monitoring Network for Atmospheric 

Radicals and Global Research Alliance was proposed 

at the end of the workshop. For a long time, the HOx 

radical has been considered a key species in 

atmospheric chemistry that controls the oxidative 

capacity of air. However, since its initial observation, 

much work remains to be done. The next workshop is 

planned for 2030. 
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Tan, Z. et al. (2026), Governing atmospheric oxidation capacity 
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Photo 2. Dr. Yosuke Sakamoto (NIES) gave a talk with 

the topic of LP-LIF Applications for ROx Uptake 

Measurement: From Lab Studies to Field Observations. 

Photo credited to Jiaru Li. 

 
Photo 1. Group photo of all participants taken at the 

conference hall. Photo credited to the Local Organizing 

Committee. 
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第 30 回大気化学討論会開催報告 

戸野倉賢一 1 *，今須良一 1，内田里沙 2，江波進一 3，大畑 祥 4，坂本陽介 5，

秦寛夫 6，藤田道也 1，星野翔麻 7，山地一代 8，石野咲子 9，梅澤拓 10 

2025 年10 月8 日（水）〜10 日（金）の３日間，東

京大学柏キャンパス環境棟FSホール等（千葉県柏

市）において，第30 回大気化学討論会が開催され，

対面形式で口頭発表およびポスター発表を行いまし

た。  

参加登録者は，一般 104 名，学生 44 名，招待講

演者 2 名および東京大学の協力学生などを含め，合

計 155 名でありました（写真 1）。会場までの交通の

便が悪いにもかかわらず，多くの皆さまにご参加いた

だきまして，厚く御礼申し上げます。 

多くの方々より講演申し込みをいただきまして，口

頭発表 37 件（うち，学生 16 件），ポスター発表 54 

件（うち，学生 17 件），招待講演 2 件，奨励賞受賞

記念講演 1 件の合計 94 件の発表が行われました。 

10 月 8 日（水）午後の特別セッションでは招待講

演として，山口祥一先生（埼玉大学）に「液体表面の

和周波発生分光の実験と計算」について，先生のこ

れまでの和周波発生分光法の確立の道のりと最新の

研究成果をご講演していただきました。山口先生に

は，同日夕方のポスターセッションにもご参加してい

ただき，ご講演内容はもちろんのこと，今後の共同研

究などについての活発な意見交換がなされました。

10 月 9 日（木）午後の特別セッションでは招待講演と

して，萩野浩之先生（日本自動車研究所）に「自動車

のブレーキ摩耗で排出されるガス・エアロゾル粒子」

について，自動車のブレーキ摩耗から排出されるガ

ス状物質の詳細分析や二次有機エアロゾル生成能

評価についての最新の研究成果についてご講演い

ただきました。同日夕方の懇親会にもご参加いただ

き，活発な意見交換が行われました。 

口頭発表では，一昨年から導入された 2 名の座

長体制での進行が行われました。1 日目と 2 日の午

前は学生の皆さんによる口頭発表が行われ，シニア

による口頭発表に負けず劣らない数々の素晴らしい

発表がありました。 

ポスター発表は，FS ホール後部と通路を隔てたギ

ャラリーを使用して，10 月 8 日（水）夕方に実施し，

活発な議論が行われました（写真 2）。口頭およびポ

スター発表を行った学生のうち 5 名（口頭発表 3 名，

ポスター発表 2 名）に学生優秀発表賞が授与されま

した（写真 3）。 

 
写真 2 ポスター発表の様子 

 
写真 1 討論会会場での集合写真（10 月 10 日） 
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10 月 9 日（木）午前には，日本大気化学会の会員

集会が開催され，奨励賞の授賞式および記念講演

が行われました。同日夕方より，場所を流山おおたか

の森に移し懇親会を実施し，87 名の方にご参加いた

だきました。 

討論会期間中には，東京ダイレック株式会社様の

企業展示がありました。また，日本大気化学会の男

女共同参画・人材育成委員会により，10 月 8 日（水）

夜に「大気化学若手交流会」が，10 月 9 日（木）昼食

時に「女性会員のつどい」が行われました。 

 

アンケート結果について 

大会終了後に実施したアンケート調査では，62 名

（うち，発表者 37 名，発表者以外の参加者 15 名）の

方からご回答をいただきました。今回の討論会全体

の満足度について，「おおいに満足」，「満足」が 9割

を占めており，大部分の参加者に満足いただけたよ

うです（図 1）。討論会に関する事前案内はわかりや

すかったかについては，「大変そう思う」，「大体そう

思う」が 9 割を占めておりました（図 2）。次回の討論

会の希望開催形式については，今回と同様の対面

開催のみが約 50%と最も多い結果でした（図 3）。 

今回の討論会についての感想などの自由記述に

は，数多くの有意義なご意見と LOC（実行委員会）に

対する温かいお言葉をいただいております。LOC 一

同，深く感謝申し上げます。 

最後に，本討論会の開催にあたり，名古屋大学宇

宙地球環境研究所，東京大学大学院新領域創成科

学研究科にご支援いただきました。また開催準備や

当日の運営において，多くの皆様にご協力いただき

討論会を無事に終えることが出来ました。この場をお

借りし，心より感謝申し上げます。 
 

 

著者所属： 

1. 東京大学 

 
写真 3 学生優秀発表賞の受賞者 

 
図 1 今回の大気化学討論会の満足度 

 
図 2 事前案内について 

 
図 3 次回の開催形式の希望 
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2. 日本自動車研究所 

3. 筑波大学 

4. 名古屋大学 

5．国立環境研究所 

6. 産業技術総合研究所 

7. 北里大学 

8. 神戸大学 

9. 金沢大学 

10．東北大学 

 

* 責任著者: 

Kenichi Tonokura <tonokura@k.u-tokyo.ac.jp> 
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第 30 回大気化学会討論会に参加して 

阮文鏵 1，Kwok Jommy 2 

日本大気化学会男女共同参画・人材育成委員会

では，第 30 回大気化学討論会において，学生会

員および若手研究者会員の討論会への参加を促進

することによる，自身の研究へのフィードバックおよび

人的ネットワーク形成を目的として，旅費の支援を実

施しました。旅費支援対象者による参加報告を以下

に掲載いたします。 

（日本大気化学会男女共同参画・人材育成委員会） 

 

１． 大気化学討論会に参加して感じたこと【阮】 

この度, 第 30回大気化学討論会に若手旅費支援

制度を利用して参加させていただきました。私は，安

定同位体トレーサーを使って大気中の窒素酸化物

やオゾンの生成・消滅メカニズムを解明していくことを

目指して研究活動に励んでおり, 討論会では「都市

大気中の粒子状及びガス状硝酸の起源：三酸素同

位体組成を指標に用いた反応経路追跡」というテー

マでポスター発表をさせていただきました。 

私が討論会で最も印象的だったことは, ポスター

発表の時間にお酒が出てきたことです。お酒があるこ

とによってポスター会場から堅苦しさが無くなり, 参加

者の皆さんが非常にリラックスしながらポスター発表

の内容について深く熱く議論することができたのは良

かったです。私のポスター発表にも多くの方々が見

に来て下さり, 研究内容に関する情報や意見を交換

することができ, 大変有意義な場となりました。今回

の発表を通じて, 様々な分野の方々から貴重な意見

をいただき, 自分の研究の完成度を高めるためには

別の視点から検討するべきことがあることに気づかさ

れました。また, 他の人のポスター発表を見ることによ

って, 色々な研究手法があることを学ぶとともに, ポ

スターのデザインや分かりやすく見せる工夫など学ぶ

べき点が多くありました。 

討論会の口頭発表会場が一会場のみであったこと

も印象的であり, 良い点と感じました。おかげさまで

大気化学に関する様々な分野の発表を集中して拝

聴することができました。自分の研究に深く関連する

研究結果は自身の研究結果の検証に役立ちました

し，普段あまり接する機会のない研究分野の発表か

ら多くの知見を得ることができ，大気化学の知識の幅

が広がりました。 

懇親会では, リラックスした雰囲気で他の研究室の

学生と互いの研究テーマや今後の進路について話

をすることができました。現在私の研究室では, 大気

化学を研究テーマに選んでいる学生は私一人だけ

でしたので，懇親会を通じて大気化学を研究してい

る若手の方々との人脈を形成することができたことは

大きな収穫でした。今回の討論会で得られた全ての

ことを私自身の今後の研究活動に活かすことで, 研

究を大きく発展させ, 次の発表ではレベルアップした

面白い発表ができるよう努めたいと思います。 

 

２ ． Experience at the JpSAC 2025 Annual 

Meeting 【Kwok】 

I was very glad to be able to join the JpSAC 2025 

annual meeting. This time, I joined with a poster 

presentation on the Pandora Spectrometer in Sapporo. 

The most rewarding aspects were the opportunity to 

connect with both familiar and new people in person; 

and I have received a lot of useful comments on my 

research.  

It is my first time joining the JpSAC’s meeting. I feel 

encouraged to know that there are also many students 

working in many different aspects of atmospheric 
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chemistry, and I was able to make a few friends. Also, 

I was delighted to meet some researchers whom I talked 

to in the JpGU, and I also got to meet some other new 

people whom I have read about before but never got to 

know them. 

For my research, I was originally a bit lost and stuck 

before I came to the meeting, so I was hoping that I 

could get some inspirations – it turned out great. I am 

very grateful that many researchers came to my poster 

just to share with me their related experience and any 

idea that may be helpful to my research. I am very 

grateful to everyone I had the pleasure of speaking with. 

I also joined the 懇親会 on the second day of the 

meeting. The atmosphere and food were really nice and 

enjoyable. I really had a great time at the meeting all in 

all, and I am looking forward to joining the meeting 

again in 2026. 
 

 

著者所属： 

1. 名古屋大学 大学院環境学研究科 

2. 北海道大学 大学院環境科学院 
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JpGU-AGU Joint Meeting 2026 大気化学セッション開催

のお知らせ 

江波進一 1*，石野咲子 2，梅澤拓 3，山地一代 4

１．JpGU-AGU2026「大気化学セッション」 

日本大気化学会では，1）地球惑星科学分野全体

に開かれた形で研究集会を実施すること，2）他分野

との交流を促進することを目的として，日本地球惑星

科学連合大会において 2007 年から大気化学セッシ

ョンを毎年開催してきました。これまで当該セッション

には口頭・ポスター発表合わせて 50~60 件程度の申

し込みがあり活発な議論が行われてきました。 

次回はアメリカ地球物理学連合（AGU）とのジョイ

ント開催で， JpGU-AGU2026 となります。 JpGU-

AGU2026 においても大気化学セッションが採択され，

開催されることとなりました。以下，重要な点を抜粋し

てお知らせします。 

 

2．日程および予稿投稿 

JpGU-AGU2026 は，現地開催およびオンライン開

催のハイブリッド方式での開催が予定されています。

口頭発表は，現地会場・オンラインの両方で，ポスタ

ー発表は現地のみで実施される予定です。また，口

頭発表の時間帯にポスター発表のフラッシュトークを

行います。ハイブリッド開催のメリットを最大限活かし

た活発な議論と意見交換の場となることが期待されま

す。 

「大気化学セッション」は口頭およびポスター発表

を実施する予定です。各セッションの口頭コマ数は前

年の投稿数を元に仮配分され，その後，実際の投稿

数により微調整されます。大気化学セッションとして，

5月 28日（木），29日（金）に 5 コマの口頭セッション

が仮配分されました。ポスターセッションは 29日の口

頭セッション終了後に引き続いて行われます。 

記 

名称：JpGU-AGU Joint Meeting 2026 

会期：2026年 5月 24日(日)～5月 29日(金) 

開催方式：ハイブリッド方式（現地＋オンライン） 

現地会場：幕張メッセ 

 

予稿投稿： 

2026年 1月 15日(木)～2月 17日(火) 17:00 

（早期投稿締切：2月 5日(木)） 

大会WEBサイト： 

https://www.jpgu.org/meeting_j2026/ 
 

3．発表言語および招待講演 

今回は AGU とのジョイント開催ということで，前回

のジョイント開催時と同じく，大気化学セッションにお

ける発表言語については，「E」区分，すなわち，スラ

イド・ポスター表記および口頭発表の言語は英語とし

ております。 

JpGU-AGU2026 においても，昨年度に引き続き，

大気化学の周辺・境界領域や，近年特に注目されて

いる分野の研究者による招待講演を実施する予定で

す。皆様の新たな研究の展開にご活用いただけます

と幸いです。 

上記にありますように予稿原稿投稿受付は 1/15か

ら，投稿最終締切は 2/17, 17:00です。日本大気化学

会として，大気化学に関連する研究を盛り上げるため

にも，皆様からの積極的な発表申込みをお願い申し

上げます。（日本大気化学会 運営委員会，プログ

ラム担当：江波進一・石野咲子，梅澤拓，山地一

代） 
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著者所属： 

1. 筑波大学 数理物質系 

2. 金沢大学 環日本海域環境研究センター 

3. 東北大学 大学院理学研究科 

4. 神戸大学 海事科学研究科  

 

* 責任著者: 

Shinichi Enami 

<enami.shinichi.ka@u.tsukuba.ac.jp> 
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第２１回日本大気化学会奨励賞の選考結果について 

 
受賞者氏名：秦 寛夫（産業技術総合研究所） 

受賞研究課題名：反応速度論に基づく大気化学反

応機構の解明 

受賞理由：秦寛夫氏は大気中化学物質の排出挙動

や反応過程の解明を目的とした研究を行っている。

2015年より在籍した東京都環境局では，大気汚染問

題の主要因の一つとして注目されていたガソリン燃

料由来の揮発性有機化合物の排出実態や熱力学的

解析，さらにその大気環境影響評価に関する研究を

実施した。2021 年に産業技術総合研究所へ入所し

た後は，研究の範囲を大気化学まで広げ，主に反応

速度論的視点からの大気化学反応モデリングや，化

学輸送モデルを用いた大気汚染構造の解明を行っ

ている。 

秦氏の強みは，東京都環境局在籍以前の民間企

業で実施した数値計算および計算機支援工学（CAE）

解析や，東京都下水道局での行政経験を生かしつ

つ，修士課程在籍時に培ったレーザー光化学や反

応速度論の知識を融合して，大気中の汚染物質の

予測や挙動に関して幅広く研究を進めていることで

ある。特に2010 年代から反応速度定数の情報が明

らかになり始めたクリーギー中間体や，過酸化ラジカ

ルの微小粒子状物質生成への影響評価に関する研

究では，既往研究で解明された速度定数をレビュー

し，未知の反応に関しては量子化学計算/遷移状態

理論計算を駆使することで，関東などの領域規模か

らアジア域，さらには全球スケールでの化学輸送モ

デル計算に発展させている。その結果，クリーギー中

間体の粒子生成への寄与は全球規模で1%程度であ

ることや，長年謎に包まれていた振動励起クリーギー

中間体と安定化クリーギー中間体それぞれの粒子生

成影響の切り分けを行い，気相中クリーギー中間体

の大気影響に関する普遍的な知見を得ることに成功

している。その他，気液界面におけるアルケンのオゾ

ン酸化反応に関する研究や，気候変動や次世代技

術導入に伴う対流圏オゾンと粒子状物質生成への影

響の評価など，未開拓な研究分野，さらには行政貢

献型研究にも意欲的に取り組んでいる。 

秦氏は大気化学討論会や日本地球惑星科学連

合大会を含む国内・国際学会において上記の研究

を含む成果発表も多く，学位取得からの期間を考慮

すると原著論文の質・量ともに十分なものであると言

える。また，同氏は大学の客員連携研究員と客員准

教授を兼任しながら，大気化学分野の後任育成にも

積極的に取り組んでいる。さらに，国際学術誌の

Associate editor を務めるなど，日本の大気化学の

存在感を世界に発信している。日本大気化学会は，

秦寛夫氏が同賞にふさわしい実績と将来性を有する

ものと認める。 

 

（日本大気化学会運営委員会） 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
秦寛夫氏 
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日本大気化学会会員集会プログラム 

日時：2025 年 10 月 9 日（木） 10:50-11:50 

場所：東京大学柏キャンパス 環境棟１階 

 

1） 持田会長より挨拶 

2) 会計・会員報告 

3) 賛助会員のご紹介 

4) 第 30 回大気化学討論会 

5) JpGU2026 での大気化学セッション 

6) 男女共同参画・人材育成の活動について 

7) 学会誌「大気化学研究」について 

8) 日本大気化学会論文賞の募集について 

9) その他 

日本大気化学会奨励賞授与式 

 

 

（日本大気化学会 運営委員会） 



学会からのお知らせ 
JpSAC news                                                                      Article No. 054N08 
 

1 
 

第 42 回日本大気化学会運営委員会議事録 

第 42回日本大気化学会運営委員会 

日時：2025 年 10 月 3日（金）08:30－10:30 

場所：WEB会議による開催 

出席者：池田恒平，石野咲子，梅澤拓，江波進一，

大畑祥，大島長，江口菜穂，河野七瀬，齋藤尚子，

関谷高志，竹川暢之，中山智喜，町田敏暢，持田陸

宏，山地一代 

欠席者：なし 

（敬称略, 50音順） 

 

持田会長より挨拶があった。 

1) 議事録確認 

「大気化学研究」誌に掲載済の第 41 回運営委員

会の議事録について確認がなされた。 

2) 会計・会員の状況，シニア終身会員の運用につ
いて 

会計・会員担当の大畑委員より，現時点での会員

数と会計の状況について報告がなされた。加えて，

シニア終身会員への種別変更に必要な書類につい

て提案がなされた。運営委員会で審議し，シニア終

身会員への変更申請時に年齢確認書類の添付は求

めないことに決定した。 

3) 日本大気化学会奨励賞と論文賞に係る細則の
改正について 

表彰担当の町田委員より，選考委員の氏名公表

に係る細則の変更について提案がなされた。運営委

員会において，継続審議とすることになった。 

4) 学会のアウトリーチ活動について 

男女共同参画・人材育成担当の河野委員より，学

会のアウトリーチ活動の検討状況について報告がな

された。持田会長から依頼を受けて男女共同参画・

人材育成委員会で検討している 4 つの案を中心に，

引き続き，検討を進めることになった。 

 

5) 未来の学術振興構想（航空機観測）について 

町田委員より，「未来の学術振興構想」の改訂に

向けた「学術の中長期研究戦略」の公募への「有人・

無人航空機による気候・地球システム科学研究の推

進」の日本気象学会との共同提案について報告がな

された。 

6) 2025年度第 30回大気化学討論会の準備状況 

プログラム担当の江波委員より，第 30 回大気化学

討論会のスケジュールと発表件数について報告がな

された。 

7) 2026年 JpGUの準備状況について 

プログラム担当の江波委員より，AGU との共催で

開催される 2026 年の JpGU の準備状況について報

告がなされた。「大気化学」セッションのコンビーナは，

プログラム委員に加えて，AGU 側から 2 名推薦して

もらえるよう JpGUを通して依頼中であるが，推薦が不

調に終われば大気化学会で候補者を検討することに

なった。 

8) 大気化学研究誌について 

編集担当の池田委員より，「大気化学研究」2026

年冬号の編集状況について報告がなされた。来年福

岡で開催される AOGS 等，国際学会の参加報告に

ついて掲載の要望があった。 

9) 2025 年度大気化学会奨励賞の選考結果と論文

賞の募集について 

奨励賞の受賞者は運営委員会にて決定され，受

賞者にはその結果が伝達済みであることが報告され

た。運営委員による積極的な声掛けなど，応募者数

を増やす取り組みも必要であるとの意見があった。ま

た，論文賞の公募および選考スケジュールについて

報告がなされた。 

10) 男女共同参画・人材育成委員会の活動につい
て 

第 30回大気化学討論会の若手旅費支援の状況，
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討論会期間中の若手会員の親睦会および女性会員

の集いの開催予定について報告がなされた。また，

2025年 11月より男女共同参画学協会連絡会の正式

加盟学協会員になることが報告された。 

11) 情報広報委員会の活動について 

学会 web ページおよび第 30 回大気化学討論会

web ページの更新と作成を行った旨の報告がなされ

た。また，学会のチラシの活用について検討がなされ

た。 

12) 2026 年度第 31 回大気化学討論会の準備状況

について 

2026年度の大気化学討論会を東北大学で開催す

ることが報告され，承認された。 

13) その他 

年会費のクレジットカード払いの可否について，継

続して検討することになった。 

以上 

 

 

（日本大気化学会 運営委員会） 
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編集後記 

今号では，トピックスとして「大気化学分野における AI/機械学習の利用」をテーマに 3 編の総説記事を掲載しました。AI が

ますます身近な存在になりつつあり，大気化学研究への利用に興味をお持ちの方も多いかと思います。 本特集では，特に

AI の一分野である機械学習のアルゴリズムの概要から，機械学習を利用した執筆者の研究まで解説していただきました。AI/

機械学習に馴染みのないという方から，専門とする方まで幅広い読者の皆様に有意義な記事になっています。著者の皆様，

及び査読を快くお引き受けいただいた皆様に，深く感謝申し上げます。 

本誌は，自身の研究や活動内容を会員と共有する有用な場としてご活用いただけます。引き続き，積極的なご投稿とご意

見をお寄せください。 (KI) 
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